199 research outputs found

    Improved Limit on the Electric Dipole Moment of the Electron

    Get PDF
    The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider

    Building one molecule from a reservoir of two atoms

    Get PDF
    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits

    Improved Limit on the Electric Dipole Moment of the Electron

    Get PDF
    The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider

    On the Prospects for Laser Cooling of TlF

    Full text link
    We measure the upper state lifetime and two ratios of vibrational branching fractions f_{v'v} on the B^{3}\Pi_{1}(v') - X^{1}\Sigma^{+}(v) transition of TlF. We find the B state lifetime to be 99(9) ns. We also determine that the off-diagonal vibrational decays are highly suppressed: f_{01}/f_{00} < 2x10^{-4} and f_{02}/f_{00} = 1.10(6)%, in excellent agreement with their predicted values of f_{01}/f_{00} < 8x10^{-4} and f_{02}/f_{00} = 1.0(2)% based on Franck-Condon factors calculated using Morse and RKR potentials. The implications of these results for the possible laser cooling of TlF and fundamental symmetries experiments are discussed.Comment: 5 pages, 2 figure

    Shot-noise-limited spin measurements in a pulsed molecular beam

    Get PDF
    Heavy diatomic molecules have been identified as good candidates for use in electron electric dipole moment (eEDM) searches. Suitable molecular species can be produced in pulsed beams, but with a total flux and/or temporal evolution that varies significantly from pulse to pulse. These variations can degrade the experimental sensitivity to changes in spin precession phase of an electri- cally polarized state, which is the observable of interest for an eEDM measurement. We present two methods for measurement of the phase that provide immunity to beam temporal variations, and make it possible to reach shot-noise-limited sensitivity. Each method employs rapid projection of the spin state onto both components of an orthonormal basis. We demonstrate both methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one of them to measure the magnetic moment of this state with increased accuracy relative to previous determinations.Comment: 12 pages, 6 figure

    Optical cycling in polyatomic molecules with complex hyperfine structure

    Full text link
    We have developed and demonstrated a scheme to achieve rotationally-closed photon cycling in polyatomic molecules with complex hyperfine structure and sensitivity to hadronic symmetry violation, specifically 171^{171}YbOH and 173^{173}YbOH. We calculate rotational branching ratios for spontaneous decay and identify repumping schemes which use electro-optical modulators (EOMs) to address the hyperfine structure. We demonstrate our scheme by cycling photons in a molecular beam and verify that we have achieved rotationally-closed cycling by measuring optical pumping into unaddressed vibrational states. Our work makes progress along the path toward utilizing photon cycling for state preparation, readout, and laser cooling in precision measurements of polyatomic molecules with complex hyperfine structure.Comment: 10 pages, 7 figure

    Magnetic and electric dipole moments of the H 3Δ1H\ {}^3\Delta_1 state in ThO

    Get PDF
    The metastable H 3Δ1H \ {}^3\Delta_1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM). The magnetic dipole moment μH\mu_H and the molecule-fixed electric dipole moment DHD_H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μH=8.5(5)×10−3 μB\mu_H = 8.5(5) \times 10^{-3} \ \mu_B displays the predicted cancellation of spin and orbital contributions in a 3Δ1{}^3 \Delta_1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<< 10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.Comment: 4 pages, 3 figure
    • …
    corecore