75 research outputs found

    Perovskite escape room: Which photons leave the film, and which are trapped inside?

    Get PDF
    Although halide perovskite materials hold great promise for optoelectronics, defect-assisted recombination still limits their efficiency. In the April issue of Matter, Fassl et al. present an open-source model for analyzing the photoluminescence spectra of perovskite films, showing a much lower internal quantum efficiency than previously thought in the field

    Gravity-driven instabilities in fibrillar colloidal gels containing a second disperse phase

    Get PDF
    Fibrillar networks are of great importance for biological systems and many industrial applications. We investigate gravity-driven instabilities in fibrilalr colloidal gels containing a second disperse phase. We use a model system containing a surfactant-stabilized oil-in-water emulsion dispersed in a gel of cellulose microfibrils in the presence of carboxymethyl cellulose. Optical scanning of the creaming emulsion containing gels along the height was used to quantify the network evolution over time. We find a remarkable correlation between the concentration of microfibrils and creaming behaviour such as initial creaming speed and final gel height. We compare this behaviour to the theoretical model of gravitational stability of poroelastic gels, which was extended to account for particle shape anisotropy and the presence of a second disperse phase. Please click Additional Files below to see the full abstract

    Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance.

    Get PDF
    Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolved microwave conductivity technique, we measure charge carrier mobilities up to 25 cm2/(V s) and impressively long charge carrier lifetimes exceeding 10 μs for vapour-deposited CsPbI3, while the carrier lifetime reaches less than 0.2 μs in the spin-coated samples. Finally, we show that these improved lifetimes result in enhanced device performance with power conversion efficiencies close to 9%. Altogether, these results suggest that the charge carrier mobility and recombination lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation

    Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers

    Get PDF
    Methylammonium lead halide perovskites have emerged as high performance photovoltaic materials. Most of these solar cells are prepared via solution-processing and record efficiencies (>20%) have been obtained employing perovskites with mixed halides and organic cations on (mesoscopic) metal oxides. Here, we demonstrate fully vacuum deposited planar perovskite solar cells by depositing methylammonium lead iodide in between intrinsic and doped organic charge transport molecules. Two configurations, one inverted with respect to the other, p-i-n and n-i-p, are prepared and optimized leading to planar solar cells without hysteresis and very high efficiencies, 16.5% and 20%, respectively. It is the first time that a direct comparison between these two opposite device configurations has been reported. These fully vacuum deposited solar cells, employing doped organic charge transport layers, validate for the first time vacuum based processing as a real alternative for perovskite solar cell preparation

    Conduction band tuning by controlled alloying of Fe into Cs2AgBiBr6 double perovskite powders

    Full text link
    Halide double perovskite semiconductors such as Cs2AgBiBr6 are widely investigated as a more stable, less toxic alternative to lead-halide perovskites in light conversion applications including photovoltaics and photoredox catalysis. However, the relatively large and indirect bandgap of Cs2AgBiBr6 limits efficient sunlight absorption. Here, we show that controlled replacement of Bi3+ with Fe3+ via mechanochemical synthesis results in a remarkable tunable absorption onset between 2.1 and ~1 eV. Our first-principles density functional theory (DFT) calculations suggest that this bandgap reduction originates primarily from a lowering of the conduction band upon introduction of Fe3+. Furthermore, we find that the tunability of the conduction band energy is reflected in the photoredox activity of these semiconductors. Finally, our DFT calculations predict a direct bandgap when >50% of Bi3+ is replaced with Fe3+. Our findings open new avenues for enhancing the sunlight absorption of double perovskite semiconductors and for harnessing their full potential in sustainable energy applications

    Accelerated hot-carrier cooling in MAPbI3 perovskite by pressure-induced lattice compression

    Get PDF
    Hot-carrier cooling (HCC) in metal halide perovskites in the high-density regime is significantly slower compared to conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck but the influence of the lattice properties on the HCC behaviour is poorly understood. Using pressure-dependent transient absorption spectroscopy (fs-TAS) we find that at an excitation density below Mott transition, pressure does not affect the HCC. On the contrary, above Mott transition, HCC in methylammonium lead iodide (MAPbI3) is around two times as fast at 0.3 GPa compared to ambient pressure. Our electron-phonon coupling calculations reveal about two times stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above Mott transition. Altogether, these findings suggest a change in the nature of excited carriers in the high-density regime, providing insights on the electronic behavior of devices operating at such high charge-carrier density

    Reduced Barrier for Ion Migration in Mixed-Halide Perovskites.

    Get PDF
    Halide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide. We find that the mixed-halide perovskites show two separate halide migration processes, in contrast to pure-phase perovskites, which show only a unique halide migration component. Compared to pure-halide perovskites, these processes have lower activation energies, facilitating ion migration in mixed versus pure-phase perovskites, and have a higher density of mobile ions. Under illumination, we find that the concentration of mobile halide ions is further increased and notice the emergence of a migration process involving methylammonium cations. Quantifying the ion migration processes in mixed-halide perovskites shines light on the key parameters allowing the design of bandgap-tunable perovskite solar cells with long-term stability
    corecore