166 research outputs found

    Relation of Serum Estrogen Metabolites with Terminal Duct Lobular Unit Involution Among Women Undergoing Diagnostic Image-Guided Breast Biopsy

    Get PDF
    Higher levels of circulating estrogens and estrogen metabolites (EMs) have been associated with higher breast cancer risk. In breast tissues, reduced levels of terminal duct lobular unit (TDLU) involution, as reflected by higher numbers of TDLUs and acini per TDLU, have also been linked to elevated breast cancer risk. However, it is unknown whether reduced TDLU involution mediates the risk associated with circulating EMs. In a cross-sectional analysis of 94 premenopausal and 92 postmenopausal women referred for clinical breast biopsy at an academic facility in Vermont, we examined the associations of 15 EMs, quantified using liquid chromatography-tandem mass spectrometry, with the number of TDLUs and acini count/TDLU using zero-inflated Poisson regression with a robust variance estimator and ordinal logistic regression models, respectively. All analyses were stratified by menopausal status and adjusted for potential confounders. Among premenopausal women, comparing the highest vs. the lowest tertiles, levels of unconjugated estradiol (risk ratio (RR) = 1.74, 95 % confidence interval (CI) = 1.06-2.87, p trend = 0.03), 2-hydroxyestrone (RR = 1.74, 95 % CI = 1.01-3.01, p trend = 0.04), and 4-hydroxyestrone (RR = 1.74, 95 % CI = 0.99-3.06, p trend = 0.04) were associated with significantly higher TDLU count. Among postmenopausal women, higher levels of estradiol (RR = 2.09, 95 % CI = 1.01-4.30, p trend = 0.04) and 16α-hydroxyestrone (RR = 2.27, 95 % CI = 1.29-3.99, p trend = 0.02) were significantly associated with higher TDLU count. Among postmenopausal women, higher levels of EMs, specifically conjugated estrone and 2- and 4-pathway catechols, were also associated with higher acini count/TDLU. Our data suggest that higher levels of serum EMs are generally associated with lower levels of TDLU involution

    Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Get PDF
    Branched-chain amino acids (BCAA) supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE)-derived biochemical markers of muscle soreness (creatine kinase (CK), aldolase, myoglobin), soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality

    Cyberdreams: visualizing music in extended reality

    Get PDF
    From the visual music films of the twentieth century to the Video Jockey (VJ) performances seen at the latest electronic dance music festivals, there is an extensive body of artistic work that seeks to visualize sound and music. The form that these visualizations take has been shaped significantly by the capabilities of available technologies; thus, we have seen a transition from paint to film; from hand-drawn animations to motion-graphics; and from analog to digital projection systems. In the twenty-first century, visualizations of music are now possible with extended reality (XR) technologies such as virtual reality (VR), augmented/mixed reality (AR/MR), and related forms of multi-projection environment such as fulldome. However, the successful design of visual music and VJ performances using XR technologies requires us to consider the compositional approaches that can be used by artists and designers. To investigate this area, this chapter will begin with an analysis of existing work that visualizes music using XR technologies. This will allow us to consider the spectrum of existing design approaches, and provide a commentary on the possibilities and limitations of the respective technologies. Following this, the chapter will provide an in-depth discussion of Weinel’s practice-led research, which extends from work exhibited at the Carbon Meets Silicon exhibitions held at Wrexham Glyndŵr University (2015, 2017), and includes AR paintings, VJ performances, and a VR application: Cyberdream VR. Through the discussion of these works, the chapter will demonstrate possible compositional principles for visualizing music across media ranging from paint to XR, enabling the realization of work that reinforces the conceptual meanings associated with music

    Folic Acid Transport to the Human Fetus Is Decreased in Pregnancies with Chronic Alcohol Exposure

    Get PDF
    During pregnancy, the demand for folic acid increases since the fetus requires this nutrient for its rapid growth and cell proliferation. The placenta concentrates folic acid into the fetal circulation; as a result the fetal levels are 2 to 4 times higher than the maternal level. Animal and in vitro studies have suggested that alcohol may impair transport of folic acid across the placenta by decreasing expression of transport proteins. We aim to determine if folate transfer to the fetus is altered in human pregnancies with chronic alcohol consumption.Serum folate was measured in maternal blood and umbilical cord blood at the time of delivery in pregnancies with chronic and heavy alcohol exposure (n = 23) and in non-drinking controls (n = 24). In the alcohol-exposed pairs, the fetal:maternal serum folate ratio was ≤ 1.0 in over half (n = 14), whereas all but one of the controls were >1.0. Mean folate in cord samples was lower in the alcohol-exposed group than in the controls (33.15 ± 19.89 vs 45.91 ± 20.73, p = 0.04).Our results demonstrate that chronic and heavy alcohol use in pregnancy impairs folate transport to the fetus. Altered folate concentrations within the placenta and in the fetus may in part contribute to the deficits observed in the fetal alcohol spectrum disorders

    Association and Haplotype Analyses of Positional Candidate Genes in Five Genomic Regions Linked to Scrotal Hernia in Commercial Pig Lines

    Get PDF
    Scrotal hernia in pigs is a complex trait likely affected by genetic and environmental factors. A large-scale association analysis of positional and functional candidate genes was conducted in four previously identified genomic regions linked to hernia susceptibility on Sus scrofa chromosomes 2 and 12, as well as the fifth region around 67 cM on chromosome 2, respectively. In total, 151 out of 416 SNPs discovered were genotyped successfully. Using a family-based analysis we found that four regions surrounding ELF5, KIF18A, COL23A1 on chromosome 2, and NPTX1 on chromosome 12, respectively, may contain the genetic variants important for the development of the scrotal hernia in pigs. These findings were replicated in another case-control dataset. The SNPs around the ELF5 region were in high linkage disequilibrium with each other, and a haplotype containing SNPs from ELF5 and CAT was highly significantly associated with hernia development. Extensive re-sequencing work focused on the KIF18A gene did not detect any further SNPs with extensive association signals. These genes may be involved in the estrogen receptor signaling pathway (KIF18A and NPTX1), the epithelial-mesenchymal transition (ELF5) and the collagen metabolism pathway (COL23A1), which are associated with the important molecular characteristics of hernia pathophysiology. Further investigation on the molecular mechanisms of these genes may provide more molecular clues on hernia development in pigs

    Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial taxonomy and phylogeny based on <it>rrs </it>(16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of <it>rrs </it>sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their <it>rrs </it>phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, <it>Clostridium </it>represents a large genus of around 110 species of significant biotechnological and medical importance. Certain <it>Clostridium </it>strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods.</p> <p>Results</p> <p>Seven hundred sixty five <it>rrs </it>sequences (> 1200 nucleotides, nts) belonging to 110 <it>Clostridium </it>species were analyzed. On the basis of 404 <it>rrs </it>sequences belonging to 15 <it>Clostridium </it>species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) <it>in silico </it>restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 <it>Clostridium </it>sp. which are presently classified up to genus level, (ii) identification of 84 novel <it>Clostridium </it>spp. and (iii) potential reduction in the number of <it>Clostridium </it>species represented by small populations.</p> <p>Conclusions</p> <p>This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality rates.</p

    Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study

    Get PDF
    his paper characterizes in an in vitro setting the release of calcium (Ca) and phosphate (PO4) of 3D printed bioactive ceramic scaffold prepared from extrudable paste containing hydroxyapatite and β-tricalcium phosphate (β-TCP). Hydroxyapatite and β-TCP were calcined at 800 °C for 11 h, fabricated into four experimental groups (100% HA, 100% β-TCP, 15%/85% HA/β-TCP, and 15%/85% HA/β-TCP (design)), sintered to 1100 °C for 4 h. Calcium and phosphorus concentrations were evaluated using ICP spectroscopy, and the release of Ca and PO4 ions during dissolution of the CaP-based scaffolds was measured by submerging in 0.05 mol/L Tris(hydroxymethyl)aminomethane-HCl and maintaining a temperature of 37 °C. The Ca and PO4 concentrations of the solutions were measured with the utilization of a calcium assay kit and a phosphate assay kit and read in a UV–visible spectrophotometer. The 100% HA scaffold group showed the greatest concentration of Ca ions (~1.9 mg/dL), but ultimately released at a lower amount as time increased; the 100% HA scaffold also showed the lowest total amount of calcium ions released over the course of evaluation. The results for the 100% β-TCP were on the opposite of the HA with the highest amount of calcium ion release over the study. While the PO4 ion release showed a similar trend as those observed with Ca ions with an apparent difference in the 100% HA scaffold group. There was nearly 0 mg/dL of the phosphate ions released in the first 24 h, in comparison to the amount of Ca ions released during the same time frame. Since various formulations can lead to different properties of these bioactive ceramic scaffolds, it is important to understand how the tailoring of this important biphasic material can impact the long-term outcome of an ever-important in vivo clinical trial in the future.Peer reviewedChemical Engineerin

    Historicising Material Agency: from Relations to Relational Constellations

    Get PDF
    Relational approaches have gradually been changing the face of archaeology over the last decade: analytically, through formal network analysis; and interpretively, with various frameworks of human-thing relations. Their popularity has been such, however, that it threatens to undermine their relevance. If everyone agrees that we should understand past worlds by tracing relations, then ‘finding relations’ in the past becomes a self-fulfilling prophecy. Focusing primarily on the interpretive approaches of material culture studies, this article proposes to counter the threat of irrelevance by not just tracing human-thing relations, but characterising how sets of relations were ordered. Such ordered sets are termed ‘relational constellations’. The article describes three relational constellations and their consequences based on practices of fine ware production in the Western Roman provinces (first century BC – third century AD): the fluid, the categorical, and the rooted constellation. Specifying relational constellations allows reconnecting material culture to specific historical trajectories, and offers scope for meaningful cross-cultural comparisons. As such a small theoretical addition based on the existing toolbox of practice-based approaches and relational thought can impact on historical narratives, and can save relational frameworks from the danger of triviality.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10816-015-9244-

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link
    corecore