563 research outputs found

    Optically induced conical intersections in traps for ultracold atoms and molecules

    Get PDF
    We show that conical intersections can be created in laboratory coordinates by dressing a parabolic trap for ultracold atoms or molecules with a combination of optical and static magnetic fields. The resulting ring trap can support single-particle states with half-integer rotational quantization and many-particle states with persistent flow. Two well-separated atomic or molecular states are brought into near-resonance by an optical field and tuned across each other with an inhomogeneous magnetic field. Conical intersections occur at the nodes in the optical field

    Formation of Ultracold Molecules by Merging Optical Tweezers

    Get PDF
    We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respective tweezers. We confirm molecule formation and establish the state of the molecule formed by measuring its binding energy. We find that the probability of molecule formation can be controlled by tuning the confinement of the traps during the merging process, in good agreement with coupled-channel calculations. We show that the conversion efficiency from atoms to molecules using this technique is comparable to magnetoassociation

    The prospects of sympathetic cooling of NH molecules with Li atoms

    Get PDF
    We calculate the quartet potential energy surface for Li+NH and use it to calculate elastic and spin-relaxation cross sections for collisions in magnetically trappable spin-stretched states. The potential is strongly anisotropic but spin-relaxation collisions are still suppressed by centrifugal barriers when both species are in spin-stretched states. In the ultracold regime, both the elastic and inelastic cross sections fluctuate dramatically as the potential is varied because of Feshbach resonances. The potential-dependence is considerably reduced at higher energies. The major effect of using an unconverged basis set in the scattering calculations is to shift the resonances without changing their general behaviour. We have calculated the ratio of elastic and spin-relaxation cross sections, as a function of collision energy and magnetic field, for a variety of potential energy surfaces. Most of the surfaces produce ratios that are favorable for sympathetic cooling, at temperatures below about 20 mK

    Multichannel Quantum Defect Theory for cold molecular collisions

    Get PDF
    Multichannel Quantum Defect Theory (MQDT) is shown to be capable of producing quantitatively accurate results for low-energy atom-molecule scattering calculations. With a suitable choice of reference potential and short-range matching distance, it is possible to define a matrix that encapsulates the short-range collision dynamics and is only weakly dependent on energy and magnetic field. Once this has been produced, calculations at additional energies and fields can be performed at a computational cost that is proportional to the number of channels N and not to N^3. MQDT thus provides a promising method for carrying out low-energy molecular scattering calculations on systems where full exploration of the energy- and field-dependence is currently impractical

    Exposure to Phthalates in Neonatal Intensive Care Unit Infants: Urinary Concentrations of Monoesters and Oxidative Metabolites

    Get PDF
    OBJECTIVE: We previously demonstrated that among 54 infants in neonatal intensive care units, exposure to polyvinyl chloride plastic medical devices containing the plasticizer di(2-ethylhexyl) phthalate (DEHP) is associated with urinary concentrations of mono(2-ethylhexyl) phthalate (MEHP), a DEHP metabolite. In this follow-up report, we studied the neonates’ exposure to DEHP-containing devices in relation to urinary concentrations of two other DEHP metabolites, and to urinary concentrations of metabolites of dibutyl phthalate (DBP) and benzylbutyl phthalate (BzBP), phthalates found in construction materials and personal care products. MEASUREMENTS: A priori, we classified the intensiveness of these 54 infants’ exposure to DEHP-containing medical products. We measured three metabolites of DEHP in infants’ urine: MEHP and two of its oxidative metabolites, mono(2-ethyl-5-hydroxylhexyl) phthalate (MEHHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP). We also measured monobutyl phthalate (MBP), a metabolite of DBP, and monobenzyl phthalate (MBzP), a metabolite of BzBP. RESULTS: Intensiveness of DEHP-containing product use was monotonically associated with all three DEHP metabolites. Urinary concentrations of MEHHP and MEOHP among infants in the high-DEHP-intensiveness group were 13–14 times the concentrations among infants in the low-intensiveness group (p ≤ 0.007). Concentrations of MBP were somewhat higher in the medium-and high-DEHP-intensiveness group; MBzP did not vary by product use group. Incorporating all phthalate data into a structural equation model confirmed the specific monotonic association between intensiveness of product use and biologic measures of DEHP. CONCLUSION: Inclusion of the oxidative metabolites MEHHP and MEOHP strengthened the association between intensiveness of product use and biologic indices of DEHP exposure over that observed with MEHP alone

    Serum AMH concentration as a marker evaluating gonadal function in boys operated on for unilateral cryptorchidism between 1st and 4th year of life

    Get PDF
    The aim of this study was to measure the serum AMH (anti-Mullerian hormone) concentrations in a group of boys with or without cryptorchidism, evaluation of karyotypes, testicular position, morphology, and major length of the undescended testes. Fifty boys who were 1–4 years old (median = 2.4 years) with unilateral cryptorchidism were evaluated. All of them underwent orchidopexy in 2010. Prior to the procedure, all of the subjects had undergone karyotyping to exclude chromosomal abnormalities. Fifty healthy boys within the same age range (median = 2.1 years) admitted for planned inguinal hernia repair in 2010, served as controls. Blood samples were collected, while obtaining blood for standard laboratory tests routinely performed before the surgeries. Medians of AMH in boys with cryptorchidism were lower than in boys with inguinal hernia and differed significantly between two groups. Undescended testes were generally found in superficial inguinal pouch (n = 46), in two cases were noted to be in the external ring of the inguinal canal, and in another two instances, in the abdominal cavity. The major lengths of the undescended testes were smaller in comparison to the testes positioned normally (mean of 1 cm vs. a mean of 1.5 cm, respectively). In nine of the cases, the testes had turgor deficit, a drop shape, with epididymides that were small, dysplastic, and separated from the testis. The authors found that AMH was lower in boys with unilateral cryptorchidism (also found to have smaller testis) when compared with the control group

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure
    corecore