7,775 research outputs found

    From Excess Stimulus to Monetary Mayhem

    Get PDF

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure

    Limb bone scaling in hopping diprotodonts and quadrupedal artiodactyls

    Get PDF
    Bone adaptation is modulated by the timing, direction, rate, and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping and quadrupedal galloping. Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 diprotodont species (body mass M 1.05 - 1536 kg) and scanned in clinical computed tomography or X-ray microtomography. Second moment of area (Imax) and bone length (l) were measured. Scaling relations (y = axb) were calculated for l vs M for each bone and for Imax vs M and Imax vs l for every 5% of length. Imax vs M scaling relationships were broadly similar between clades despite the diprotodont forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. Imax vs l and l vs M scaling were related to locomotor and behavioural specialisations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits

    Excitations of a Bose-condensed gas in anisotropic traps

    Full text link
    We investigate the zero-temperature collective excitations of a Bose-condensed atomic gas in anisotropic parabolic traps. The condensate density is determined by solving the Gross-Pitaevskii (GP) equation using a spherical harmonic expansion. The GP eigenfunctions are then used to solve the Bogoliubov equations to obtain the collective excitation frequencies and mode densities. The frequencies of the various modes, classified by their parity and the axial angular momentum quantum number, m, are mapped out as a function of the axial anisotropy. Specific emphasis is placed upon the evolution of these modes from the modes in the limit of an isotropic trap.Comment: 7 pages Revtex, 9 Postscript figure

    Dissipation in nanocrystalline-diamond nanomechanical resonators

    Get PDF
    We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz

    Bedrock Geology of Rogers Quadrangle, Benton County, Arkansas

    Get PDF
    A digital geologic map of Rogers quadrangle was produced at 1:24,000 scale using the geographic information system (GIS) software Maplnfo. Data regarding stratigraphic relations observed in the field were digitized onto the United States Geological Survey (USGS) digital raster graphic (DRG) of Rogers quadrangle. The geology of Rogers quadrangle consists of sedimentary rocks of the Ordovician, Devonian, and Mississippian systems. The Cotter, Powell, and Everton formations represent the Ordovician System. The Clifty and Chattanooga formations represent the Devonian System. The St.Joe and Boone formations represent the Mississippian System. This mapping effort represents the first time stratigraphy of Rogers quadrangle was mapped utilizing digital technologies. The prominent geologic structures in Rogers quadrangle are east- west and north - south trending normal faults, commonly inferred from stratigraphic relations across small drainages inundated by Beaver Lake; the most extensive faulting was located in the Blackburn Creek arm and the Prairie Creek sub-basin of Beaver Lake. Complex faulting in the Prairie Creek area appears to have a long geologic history; here the Devonian Chattanooga Shale lies directly on top of the Ordovician Cotter formation, suggesting that the Ordovician Powell and Everton formations and much of the Devonian Clifty formation were either never deposited or have eroded from this area. In either case, the Prairie Creek area appears to represent a structural high developed during the Middle to Late Ordovician that was eventually inundated by rising sea level to permit deposition of the Chattanooga Shale. Detailed mapping of Rogers and other northwest Arkansas quadrangles is providing new insights into the geologic evolution of the southern continental craton and Ozark Plateaus during the Paleozoic Era

    Sensitive cytokine assay based on optical fiber allowing localized and spatially resolved detection of interleukin-6

    Get PDF
    We demonstrated a cytokine detection device based on gold nanoparticle modified silica optical fiber for the monitoring of locally variable cytokine interleukin-6 (IL-6) concentrations using a sandwich immunoassay scheme. The fiber is designed to be introduced into an intrathecal catheter with micrometer-sized holes drilled along its length to enable fluid exchange between the outside and inside of the catheter. An exposed optical fiber (diameter 125 ÎŒm) modified with a layer of gold nanoparticles was functionalized with the IL-6 capture antibody to form the sensing interface. The immunocapture device was incubated with a cytokine solution to capture the analyte. The device was then exposed to the IL-6 detection antibody which was loaded on the fluorescently labeled magnetic nanoparticles, making it possible to quantify the cytokine concentration based on the intensity of fluorescence. A reliable method for quantifying the fluorescent signal on a 3D structure was developed. This device was applied to the detection of cytokine IL-6 with the low limit of detection of 1 pg mL⁻Âč in a sample volume of 1 ÎŒL. The device has the linear detection range of 1–400 pg mL⁻Âč and spatial resolution on the order of 200–450 ÎŒm, and it is capable of detecting localized IL-6 secreted by live BV2 cells following their liposaccharide stimulation. This biological detection system is suitable for monitoring multiple health conditions.Guozhen Liu, Kaixin Zhang, Annemarie Nadort, Mark R. Hutchinson, and Ewa M. Goldy
    • 

    corecore