8,498 research outputs found

    A robust method for measurement of fluctuation parallel wavenumber in laboratory plasmas

    Get PDF
    Measuring the parallel wavenumber is fundamental for the experimental characterization of electrostatic instabilities. It becomes particularly important in toroidal geometry, where spatial inhomogeneities and curvature can excite both drift instabilities, whose wavenumber parallel to the magnetic field is finite, and interchange instabilities, which typically have vanishing parallel wavenumber. We demonstrate that multipoint measurements can provide a robust method for the discrimination between the two cases

    Report on the Geology and Coals of the Central City, Madisonville, Calhoun, and Newberg Quadrangles (in Muhlenberg, Hopkins, Ohio, McLean, Webster, Daviess, and Henderson Counties)

    Get PDF
    A report on coal viability and other natural resources in Central City, Madisonville, Calhoun, and Newburg Quadrangles (in Muhlenberg, Hopkins, Ohio, McLean, Webster, Daviess, and Henderson Counties), Kentucky. General Geology - pp 3 - 27 Central City Quadrangle - pp 28 - 68 Madisonville Quadrangle - pp 69 - 98 Calhoun Quadrangle - pp 99 - 116 Newberg Quadrangle - pp 117 - 12

    High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys

    Full text link
    The development of new engineering alloy chemistries is a time consuming and iterative process. A necessary step is characterization of the nano/microstructure to provide a link between the processing and properties of each alloy chemistry considered. One approach to accelerate the identification of optimal chemistries is to use samples containing a gradient in composition, ie. combinatorial samples, and to investigate many different chemistries at the same time. However, for engineering alloys, the final properties depend not only on chemistry but also on the path of microstructure development which necessitates characterization of microstructure evolution for each chemistry. In this contribution we demonstrate an approach that allows for the in-situ, nanoscale characterization of the precipitate structures in alloys, as a function of aging time, in combinatorial samples containing a composition gradient. The approach uses small angle x-ray scattering (SAXS) at a synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the combinatorial samples prepared contain a gradient in Co from 0% to 2%. These samples are aged at temperatures between 450{\textdegree}C and 550{\textdegree}C and the precipitate structures (precipitate size, volume fraction and number density) all along the composition gradient are simultaneously monitored as a function of time. This large dataset is used to test the applicability and robustness of a conventional class model for precipitation that considers concurrent nucleation, growth and coarsening and the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali

    The enviornmental assessment of a contemporary coal mining system

    Get PDF
    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected

    A tool for simulating and communicating uncertainty when modelling species distributions under future climates

    Get PDF
    Tools for exploring and communicating the impact of uncertainty on spatial prediction are urgently needed, particularly when projecting species distributions to future conditions. We provide a tool for simulating uncertainty, focusing on uncertainty due to data quality. We illustrate the use of the tool using a Tasmanian endemic species as a case study. Our simulations provide probabilistic, spatially explicit illustrations of the impact of uncertainty on model projections. We also illustrate differences in model projections using six different global climate models and two contrasting emissions scenarios. Our case study results illustrate how different sources of uncertainty have different impacts on model output and how the geographic distribution of uncertainty can vary. Synthesis and applications: We provide a conceptual framework for understanding sources of uncertainty based on a review of potential sources of uncertainty in species distribution modelling; a tool for simulating uncertainty in species distribution models; and protocols for dealing with uncertainty due to climate models and emissions scenarios. Our tool provides a step forward in understanding and communicating the impacts of uncertainty on species distribution models under future climates which will be particularly helpful for informing discussions between researchers, policy makers, and conservation practitioners

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201
    • …
    corecore