9,660 research outputs found

    Regional variation in digital cushion pressure in the forefeet of horses and elephants

    Get PDF
    In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment

    An Assessment of Basic Computer Proficiency Among Active Internet Users: Test Construction, Calibration, Antecedents and Consequences

    Get PDF
    The purpose of this article is to describe our efforts to create a test of basic computer proficiency, examine its properties using parametric test scoring methods, and identify some antecedents and consequences that accompany differences in performance. We also consider how much insight people have into their level of knowledge by examining the relationship between our tested measure of computer knowledge and self-rated knowledge scores collected at the same time. This research also adds to the large body of existing empirical work on computer literacy in the student population, by looking at computer literacy in a more general sample of the Internet-using population. A further purpose of this research, as a result, is to make our dataset available for future research

    Foot pressure distribution in White Rhinoceroses (Ceratotherium simum) during walking

    Get PDF
    White rhinoceroses (Ceratotherium simum) are odd-toed ungulates that belong to the group Perissodactyla. Being second only to elephants in terms of large body mass amongst extant tetrapods, rhinoceroses make fascinating subjects for the study of how large land animals support and move themselves. Rhinoceroses often are kept in captivity for protection from ivory poachers and for educational/touristic purposes, yet a detrimental side effect of captivity can be foot disease (i.e., enthesopathies and osteoarthritis around the phalanges). Foot diseases in large mammals are multifactorial, but locomotor biomechanics (e.g., pressures routinely experienced by the feet) surely can be a contributing factor. However, due to a lack of in vivo experimental data on rhinoceros foot pressures, our knowledge of locomotor performance and its links to foot disease is limited. The overall aim of this study was to characterize peak pressures and center of pressure trajectories in white rhinoceroses during walking. We asked two major questions. First, are peak locomotor pressures the lowest around the fat pad and its lobes (as in the case of elephants)? Second, are peak locomotor pressures concentrated around the areas with the highest reported incidence of pathologies? Our results show a reduction of pressures around the fat pad and its lobes, which is potentially due to the material properties of the fat pad or a tendency to avoid or limit “heel” contact at impact. We also found an even and gradual concentration of foot pressures across all digits, which may be a by-product of the more horizontal foot roll-off during the stance phase. While our exploratory, descriptive sample precluded hypothesis testing, our study provides important new data on rhinoceros locomotion for future studies to build on, and thus impetus for improved implementation in the care of captive/managed rhinoceroses

    Pattern formation and selection in quasi-static fracture

    Full text link
    Fracture in quasi-statically driven systems is studied by means of a discrete spring-block model. Developed from close comparison with desiccation experiments, it describes crack formation induced by friction on a substrate. The model produces cellular, hierarchical patterns of cracks, characterized by a mean fragment size linear in the layer thickness, in agreement with experiments. The selection of a stationary fragment size is explained by exploiting the correlations prior to cracking. A scaling behavior associated with the thickness and substrate coupling, derived and confirmed by simulations, suggests why patterns have similar morphology despite their disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include

    The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes

    Get PDF
    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure

    Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds

    Full text link
    We study curvature functionals for immersed 2-spheres in a compact, three-dimensional Riemannian manifold M. Under the assumption that the sectional curvature of M is strictly positive, we prove the existence of a smoothly immersed sphere minimizing the L^{2} integral of the second fundamental form. Assuming instead that the sectional curvature is less than or equal to 2, and that there exists a point in M with scalar curvature bigger than 6, we obtain a smooth 2-sphere minimizing the integral of 1/4|H|^{2} +1, where H is the mean curvature vector
    corecore