4,294 research outputs found
A robust method for measurement of fluctuation parallel wavenumber in laboratory plasmas
Measuring the parallel wavenumber is fundamental for the experimental characterization of electrostatic instabilities. It becomes particularly important in toroidal geometry, where spatial inhomogeneities and curvature can excite both drift instabilities, whose wavenumber parallel to the magnetic field is finite, and interchange instabilities, which typically have vanishing parallel wavenumber. We demonstrate that multipoint measurements can provide a robust method for the discrimination between the two cases
Slow electron holes in the Earth's magnetosheath
We present a statistical analysis of electrostatic solitary waves observed
aboard Magnetospheric Multiscale spacecraft in the Earth's magnetosheath.
Applying single-spacecraft interferometry to several hundred solitary waves
collected in about two minute intervals, we show that almost all of them have
the electrostatic potential of positive polarity and propagate quasi-parallel
to the local magnetic field with plasma frame velocities of the order of 100
km/s. The solitary waves have typical parallel half-widths from 10 to 100 m
that is between 1 and 10 Debye lengths and typical amplitudes of the
electrostatic potential from 10 to 200 mV that is between 0.01 and 1\% of local
electron temperature. The solitary waves are associated with quasi-Maxwellian
ion velocity distribution functions, and their plasma frame velocities are
comparable with ion thermal speed and well below electron thermal speed. We
argue that the solitary waves of positive polarity are slow electron holes and
estimate the time scale of their acceleration, which occurs due to interaction
with ions, to be of the order of one second. The observation of slow electron
holes indicates that their lifetime was shorter than the acceleration time
scale. We argue that multi-spacecraft interferometry applied previously to
these solitary waves is not applicable because of their too-short spatial
scales. The source of the slow electron holes and the role in electron-ion
energy exchange remain to be established
Exponential Divergence and Long Time Relaxation in Chaotic Quantum Dynamics
Phase space representations of the dynamics of the quantal and classical cat
map are used to explore quantum--classical correspondence in a K-system: as
, the classical chaotic behavior is shown to emerge smoothly and
exactly. The quantum dynamics near the classical limit displays both
exponential separation of adjacent distributions and long time relaxation, two
characteristic features of classical chaotic motion.Comment: 10 pages, ReVTeX, to appear in Phys. Rev. Lett. 13 figures NOT
included. Available either as LARGE (uuencoded gzipped) postscript files or
hard-copies from [email protected]
Mechanical theory of the film-on-substrate-foil structure : curvature and overlay alignment in amorphous silicon thin-film devices fabricated on free-standing foil substrates
Flexible electronics will have inorganic devices grown at elevated temperatures on free-standing foil substrates. The thermal contraction mismatch between the substrate and the deposited device films, and the built-in stresses in these films, cause curving and a change in the in-plane dimensions of the workpiece. This change causes misalignment between the device layers. The thinner and more compliant the substrate, the larger the curvature and the misalignment. We model this situation with the theory of a bimetallic strip, which suggests that the misalignment can be minimized by tailoring the built-in stress introduced during film growth. Amorphous silicon thin-film transistors (a-Si:H TFTs) fabricated on stainless steel or polyimide (PI) (Kapton EÂź) foils need tensile built-in stress to compensate for the differential thermal contraction between the silicon films and the substrate. Experiments show that by varying the built-in stress in just one device layer, the gate silicon nitride (SiNx), one can reduce the misalignment between the source/drain and the gate levels from âŒ400 parts-per-million to âŒ100 parts-per-million
Adverse Outcome Pathways can drive non-animal approaches for safety assessment
Adverse Outcome Pathways (AOPs) provide an opportunity to develop new and more accurate safety assessment processes for drugs and other chemicals, and may ultimately play an important role in regulatory decision making. Not only can the development and application of AOPs pave the way for the development of improved evidence-based approaches for hazard and risk assessment, there is also the promise of a significant impact on animal welfare, with a reduced reliance on animal-based methods. The establishment of a useable and coherent knowledge framework under which AOPs will be developed and applied has been a first critical step towards realizing this opportunity. This article explores how the development of AOPs under this framework, and their application in practice, could benefit the science and practice of safety assessment, while in parallel stimulating a move away from traditional methods towards an increased acceptance of non-animal approaches. We discuss here the key areas where current, and future initiatives should be focused to enable the translation of AOPs into routine chemical safety assessment, and lasting 3Rs benefits
Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source
We have performed a systematic study of the Bremsstrahlung emission from the
electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance
Ion Source. The electronic spectral temperature and the product of ionic and
electronic densities of the plasma are measured by analyzing the Bremsstrahlung
spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the
injected power. Within our uncertainty, we find an average temperature of ? 48
keV above 100W, with a weak dependency on the injected power and gas
composition. Charge state distributions of extracted ion beams have been
determined as well, providing a way to disentangle the ionic density from the
electronic density. Moreover X-ray emission from highly charged argon ions in
the plasma has been observed with a high-resolution mosaic crystal
spectrometer, demonstrating the feasibility for high-precision measurements of
transition energies of highly charged ions, in particular of the magnetic
dipole (M1) transition of He-like of argon ions
Spherical probes at ion saturation in E Ă B fields
The ion saturation current to a spherical probe in the entire range of ion
magnetization is computed with SCEPTIC3D, a newthree-dimensional version
of the kinetic code SCEPTIC designed to study transverse plasma flows. Results
are compared with prior two-dimensional calculations valid in the magneticfree
regime (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953), and
with recent semi-analytic solutions to the strongly magnetized transverse Mach
probe problem (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403).
At intermediate magnetization (ion Larmor radius close to the probe radius)
the plasma density profiles show a complex three-dimensional structure that
SCEPTIC3D can fully resolve, and, contrary to intuition, the ion current peaks
provided the ion temperature is low enough. Our results are conveniently
condensed in a single factor M[subscript c], function of ion temperature and magnetic
field only, providing the theoretical calibration for a transverse Mach probe
with four electrodes placed at 45⊠to the magnetic field in a plane of flow and
magnetic field
Strongly Non-Equilibrium Bose-Einstein Condensation in a Trapped Gas
We present a qualitative (and quantitative, at the level of estimates)
analysis of the ordering kinetics in a strongly non-equilibrium state of a
weakly interacting Bose gas, trapped with an external potential. At certain
conditions, the ordering process is predicted to be even more rich than in the
homogeneous case. Like in the homogeneous case, the most characteristic feature
of the full-scale non-equilibrium process is the formation of superfluid
turbulence.Comment: 4 pages, revtex, no figures. Submitted to PR
Orthogonal localized wave functions of an electron in a magnetic field
We prove the existence of a set of two-scale magnetic Wannier orbitals
w_{m,n}(r) on the infinite plane. The quantum numbers of these states are the
positions {m,n} of their centers which form a von Neumann lattice. Function
w_{00}localized at the origin has a nearly Gaussian shape of
exp(-r^2/4l^2)/sqrt(2Pi) for r < sqrt(2Pi)l,where l is the magnetic length.
This region makes a dominating contribution to the normalization integral.
Outside this region function, w_{00}(r) is small, oscillates, and falls off
with the Thouless critical exponent for magnetic orbitals, r^(-2). These
functions form a convenient basis for many electron problems.Comment: RevTex, 18 pages, 5 ps fi
From self-similar groups to self-similar sets and spectra
The survey presents developments in the theory of self-similar groups leading
to applications to the study of fractal sets and graphs, and their associated
spectra
- âŠ