18 research outputs found
Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC.
A2A adenosine and CB1 cannabinoid receptors are highly expressed in the central nervous system, where they modulate numerous physiological processes including adaptive responses to drugs of abuse. Both purinergic and cannabinoid systems interact with dopamine neurotransmission (through A2A and CB1 receptors, respectively). Changes in dopamine neurotransmission play an important role in addictive-related behaviours. In this study, we investigated the contribution of A2A adenosine receptors in several behavioural responses of Delta9-tetrahydrocannabinol (THC) related to its addictive properties, including tolerance, physical dependence and motivational effects. For this purpose, we first investigated acute THC responses in mice lacking A2A adenosine receptors. Antinociception, hypolocomotion and hypothermia induced by acute THC administration remained unaffected in mutant mice. Chronic THC treatment developed similar tolerance to these acute effects in wild-type and A2A-knockout mice. However, differences in the body weight pattern were found between genotypes during such chronic treatment. Interestingly, the somatic manifestations of SR141716A-precipitated THC withdrawal were significantly attenuated in mutant mice. The motivational responses of THC were also evaluated by using the place-conditioning paradigm. A significant reduction of THC-induced rewarding and aversive effects was found in mice lacking A2A adenosine receptors in comparison with wild-type littermates. Binding studies revealed that these behavioural changes were not associated with any modification in the distribution and/or functional activity of CB1 receptors in knockout mice. Therefore, this study shows, for the first time, a specific involvement of A2A receptors in the addictive-related properties of cannabinoids.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe
Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice
The possible interactions between Delta9-tetrahydrocannabinol (THC) and nicotine remain unclear in spite of the current association of cannabis and tobacco in humans. The aim of the present study was to explore the interactions between these two drugs of abuse by evaluating the consequences of THC administration on the somatic manifestations and the aversive motivational state associated to nicotine withdrawal in mice. Acute THC administration significantly decreased the incidence of several nicotine withdrawal signs precipitated by mecamylamine or naloxone, such as wet-dog-shakes, paw tremor and scratches. In both experimental conditions, the global withdrawal score was also significantly attenuated by acute THC administration. THC also reversed conditioned place aversion associated to naloxone precipitated nicotine withdrawal. We have then evaluated whether this effect of THC was due to possible adaptive changes induced by chronic nicotine on CB1 cannabinoid receptors. The stimulation of GTPS-binding proteins by the cannabinoid agonist WIN 55,212-2 and the density of CB1 cannabinoid receptor binding labelled with [3H] CP-55,940 were not modified by chronic nicotine treatment in the different brain structures investigated. Finally, we evaluated the consequences of THC administration on c-Fos expression in several brain structures after chronic nicotine administration and withdrawal. c-Fos was decreased in the caudate putamen and the dentate gyrus after mecamylamine precipitated nicotine withdrawal. However, acute THC administration did not modify c-Fos expression under these experimental conditions. Taken together, these results indicate that THC administration attenuated somatic signs of nicotine withdrawal and this effect was not associated to compensatory changes on CB1 cannabinoid receptors during chronic nicotine administration. In addition, THC also ameliorated the aversive motivational consequences of nicotine withdrawal.This work has been supported by grants from Human Frontier Science Program Organization (RG0077/2000-B), Plan Nacional sobre Drogas, Generalitat de Catalunya (Research Distinction), 2002 SGR00193 and the European Comission “Quality of Life and Management of Living Resources QLRT-2001-01691. Graciela Balerio is a postdoctoral fellow supported by “Fundación Carolina”. Fernando Berrendero is a researcher supported by “Ramón y Cajal” research program of the Ministery of Science and Technology