547 research outputs found
Bjerrum pairing correlations at charged interfaces
Electrostatic correlations play a fundamental role in aqueous solutions. In
this letter, we identify transverse and lateral correlations as two mutually
exclusive regimes. We show that the transverse regime leads to binding by
generalization of Bjerrum pair formation theory, yielding binding constants
from first-principle statistical-mechanical calculations. We compare our
theoretical predictions with experiments on charged membranes and Langmuir
monolayers and find good agreement. We contrast our approach with existing
theories in the strong-coupling limit and on charged modulated interfaces, and
discuss different scenarios that lead to charge reversal and equal-sign
attraction by macro-ions.Comment: 7 pages, 4 figure
Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations
The semiparametric accelerated failure time model is not as widely used as
the Cox relative risk model mainly due to computational difficulties. Recent
developments in least squares estimation and induced smoothing estimating
equations provide promising tools to make the accelerate failure time models
more attractive in practice. For semiparametric multivariate accelerated
failure time models, we propose a generalized estimating equation approach to
account for the multivariate dependence through working correlation structures.
The marginal error distributions can be either identical as in sequential event
settings or different as in parallel event settings. Some regression
coefficients can be shared across margins as needed. The initial estimator is a
rank-based estimator with Gehan's weight, but obtained from an induced
smoothing approach with computation ease. The resulting estimator is consistent
and asymptotically normal, with a variance estimated through a multiplier
resampling method. In a simulation study, our estimator was up to three times
as efficient as the initial estimator, especially with stronger multivariate
dependence and heavier censoring percentage. Two real examples demonstrate the
utility of the proposed method
Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Some fish populations inhabiting contaminated environments show evidence of increased chemical tolerance, however the mechanisms contributing to this tolerance, and whether this is heritable, are poorly understood. We investigated the responses of two populations of wild three-spined stickleback (Gasterosteus aculeatus) with different histories of contaminant exposure to an oestrogen and copper, two widespread aquatic pollutants. Male stickleback originating from two sites, the River Aire, with a history of complex pollution discharges, and Siblyback Lake, with a history of metal contamination, were depurated and then exposed to copper (46μg/L) and the synthetic oestrogen ethinyloestradiol (22ng/L). The hepatic transcriptomic response was compared between the two populations and to a reference population with no known history of exposure (Houghton Springs, Dorset). Gene responses included those typical for both copper and oestrogen, with no discernable difference in response to oestrogen between populations. There was, however, some difference in the magnitude of response to copper between populations. Siblyback fish showed an elevated baseline transcription of genes encoding metallothioneins and a lower level of metallothionein induction following copper exposure, compared to those from the River Aire. Similarly, a further experiment with an F1 generation of Siblyback fish bred in the laboratory found evidence for elevated transcription of genes encoding metallothioneins in unexposed fish, together with an altered transcriptional response to 125μg/L copper, compared with F1 fish originating from the clean reference population exposed to the same copper concentration. These data suggest that the stickleback from Siblyback Lake have a differential response to copper, which is inherited by the F1 generation in laboratory conditions, and for which the underlying mechanism may include an elevation of baseline transcription of genes encoding metallothioneins. The genetic and/or epigenetic mechanisms contributing to this inherited alteration of metallothionein transcription have yet to be established.This work was funded by the UK NERC postgenomic and proteomic programme grant NE/C507661/1 and by a Fisheries Society of the British Isles research grant to EMS. Birmingham functional genomics facilities were funded by BBSRC grant 6/JIF13209. We thank R.E. Godfrey, S. Jondhale, A. Jones, and L. Klovrza for technical assistance, J.K. Chipman for help and support, and the Environment Agency for provision of water chemistry data
NFATc1 controls the cytotoxicity of CD8+ T cells
NFAT nuclear translocation has been shown to be required for CD8+ T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8+ T cells required for optimal response to bacteria and tumor cells
Stretching and heating cells with light-nonlinear photothermal cell rheology
Stretching and heating are everyday experiences for skin and tissue cells. They are also standard procedures to reduce the risk for injuries in physical exercise and to relieve muscle spasms in physiotherapy. Here, we ask which immediate and long-term mechanical effects of such treatments are quantitatively detectable on the level of individual living cells. Combining versatile optical stretcher techniques with a well-tested mathematical model for viscoelastic polymer networks, we investigate the thermomechanical properties of suspended cells with a photothermal rheometric protocol that can disentangle fast transient and slow 'inelastic' components in the nonlinear mechanical response. We find that a certain minimum strength and duration of combined stretching and heating is required to induce long-lived alterations of the mechanical state of the cells, which then respond qualitatively differently to mechanical tests than after weaker/shorter treatments or merely mechanical preconditioning alone. Our results suggest a viable protocol to search for intracellular biomolecular signatures of the mathematically detected dissimilar mechanical response modes
Understanding the association between skin involvement and joint activity in patients with psoriatic arthritis: experience from the Corrona Registry.
Objective: To compare the characteristics of patients with psoriatic arthritis among patient groups stratified by degree of skin and joint involvement, and to evaluate the relationship between skin severity and joint activity.
Methods: Body surface area (BSA) and Clinical Disease Activity Index (CDAI) at enrolment were analysed. Patient characteristics were stratified by skin severity and joint activity. Baseline patient characteristics, clinical and disease characteristics and patient-reported outcomes were compared. The strength of the relationship of skin severity and joint activity was evaluated using methods for categorical variables (χ
Results: 1542 adult patients in the Corrona Psoriatic Arthritis/Spondyloarthritis Registry enrolled between 21 May 2013 and 20 September 2016 were analysed. Most patients in the BSA \u3e3%/CDAI moderate/high subgroup had worse clinical and patient-reported outcomes. A significant (p
Conclusion: Skin severity is modestly correlated with joint activity, and patients with higher skin severity are two times more likely to have increased joint involvement. Clinicians need to address both skin severity and joint activity in treatment decisions
Shared Patterns of Cognitive Control Behavior and Electrophysiological Markers in Adolescence
Behavioral parameters obtained from cognitive control tasks have been linked to electrophysiological markers. Yet, most previous research has investigated only a few specific behavioral parameters at a time. An integrated approach with simultaneous consideration of multiple aspects of behavior may better elucidate the development and function of cognitive control. Here, we aimed to identify shared patterns between cognitive control behavior and electrophysiological markers using stop-signal task data and EEG recordings from an adolescent sample (n = 193, aged 11-25 years). We extracted behavioral variables covering various aspects of RT, accuracy, inhibition, and decision-making processes, as well as amplitude and latency of the ERPs N1, N2, and P3. To identify shared patterns between the two sets of variables, we employed a principal component analysis and a canonical correlation analysis. First, we replicated previously reported associations between various cognitive control behavioral parameters. Next, results from the canonical correlation analysis showed that overall good task performance was associated with fast and strong neural processing. Furthermore, the canonical correlation was affected by age, indicating that the association varies depending on age. The present study suggests that although distributional and computational methods can be applied to extract specific behavioral parameters, they might not capture specific patterns of cognitive control or electrophysiological brain activity in adolescents.</p
Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task
Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations
Liver-Specific Commd1 Knockout Mice Are Susceptible to Hepatic Copper Accumulation
Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Δhep) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1Δhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Δhep mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Δhep mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1Δhep mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Δhep mice could be detected. Despite the absence of hepatocellular toxicity in Commd1Δhep mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis
- …
