5 research outputs found

    Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management

    Get PDF
    Chemical analysis of calcified structures continues to flourish, as analytical and technological advances enable researchers to tap into trace elements and isotopes taken up in otoliths and other archival tissues at ever greater resolution. Increasingly, these tracers are applied to refine age estimation and interpretation, and to chronicle responses to environmental stressors, linking these to ecological, physiological, and life-history processes. Here, we review emerging approaches and innovative research directions in otolith chemistry, as well as in the chemistry of other archival tissues, outlining their value for fisheries and ecosystem-based management, turning the spotlight on areas where such biomarkers can support decision making. We summarise recent milestones and the challenges that lie ahead to using otoliths and archival tissues as biomarkers, grouped into seven, rapidly expanding and application-oriented research areas that apply chemical analysis in a variety of contexts, namely: (1) supporting fish age estimation; (2) evaluating environmental stress, ecophysiology and individual performance; (3) confirming seafood provenance; (4) resolving connectivity and movement pathways; (5) characterising food webs and trophic interactions; (6) reconstructing reproductive life histories; and (7) tracing stock enhancement efforts. Emerging research directions that apply hard part chemistry to combat seafood fraud, quantify past food webs, as well as to reconcile growth, movement, thermal, metabolic, stress and reproductive life-histories provide opportunities to examine how harvesting and global change impact fish health and fisheries productivity. Ultimately, improved appreciation of the many practical benefits of archival tissue chemistry to fisheries and ecosystem-based management will support their increased implementation into routine monitoring.[GRAPHICS]

    Seasonal depth distribution and thermal experience of the non-indigenous round goby Neogobius melanostomus in the Baltic Sea: implications to key trophic relations

    Get PDF
    Native to the Ponto-Caspian region, the benthic round goby (Neogobius melanostomus) has invaded several European inland waterbodies as well as the North American Great Lakes and the Baltic Sea. The species is capable of reaching very high densities in the invaded ecosystems, with not only evidence for significant food-web effects on the native biota and habitats, but also negative implications to coastal fishers. Although generally considered a coastal species, it has been shown that round goby migrate to deeper areas of the Great Lakes and other inland lakes during the cold season. Such seasonal movements may create new spatio-temporal ecosystem consequences in invaded systems. To seek evidence for seasonal depth distribution in coastal marine habitats, we compiled all available catch data for round goby in the Baltic Sea since its invasion and until 2017. We furthermore related the depths at capture for each season with the ambient thermal environment. The round goby spend autumn and winter at significantly deeper and offshore areas compared to spring and summer months; few fish were captured at depths 25 m. The thermal conditions at which round goby were caught varied significantly between seasons, being on average 18.3 °C during summer, and dropping to a low 3.8 °C during winter months. Overall, the fish sought the depths within each season with the highest possible temperatures. The spatial distribution of the round goby substantially overlaps with that of its main and preferred prey (mussels) and with that of its competitor for food (flatfish), but only moderately with the coastal predatory fish (perch), indicating thereby very complex trophic interactions associated with this invasion. Further investigations should aim at quantifying the food web consequences and coupling effects between different habitats related to seasonal migrations of the round goby, both in terms of the species as a competitor, predator and prey

    Invasion rate and population characteristics of the round goby Neogobius melanostomus: effects of density and invasion history

    Get PDF
    Round goby Neogobius melanostomus is currently one of the most wide-ranging invasive fish species in Europe and North America. The present study demonstrates how the distribution of round goby has expanded from 2008 to 2013 at a rate of about 30 km yr(-1) along the Danish coastline in the western Baltic Sea. Further analyses showed that fish from an established high-density round goby population were slow-growing and displayed poorer condition (weight at age and hepatosomatic index) compared to fish sampled from recently invaded locations (i.e. at the forefront of the distribution range). The established population revealed a broad age distribution and a 1:1 gender ratio, while fish from a recently invaded site were primarily of intermediate ages with a male-biased gender ratio. Otolith analyses suggested that the oldest individuals from the recently invaded area experienced superior growth conditions only in the most recent years, suggesting immigration into the area as adults. Our results suggest that intraspecific competition for food may cause continued dispersal of the species and that population demographics likely relate to invasion history

    Gadoids

    No full text
    This chapter was written during the Workshop on Age Validation of Gadoids (WKAVGS 2013) which was held 6–10 May 2013 at Imedea in Esporles, Mallorca. The terms of reference for the workshop were to: 1. Review information on age estimations, otolith exchanges, workshops, and validation works done so far on the following species: European hake, cod, pollock, saithe, haddock, whiting, and blue whiting; 2. Assemble and compare the results of different validation methods (i.e. marking and recapture, marking the calcified structure, marginal increment analysis, marginal analysis, modal progression analysis, length back-calculation, etc.); 3. Discuss and propose the most appropriate validation methods of age and growth pattern of calcified structures (CS), for each species and stock; 4. Propose the appropriate validation methods to recognize the growth check as well as the spawning ring, demersal ring, migration ring, etc.; 5. Propose an ICES Cooperative Research Report on: Age Validation Studies for ICES and GCFM Gadoid Stocks to ICES PGCCDBS, using previous studies and the outcome of this workshop; 6. Based on results, conclusions, and recommendations from this workshop to initiate and design an international cooperation project on validation methods (such as on the validation of checks and spawning rings) to commence after the workshop

    Salinity dynamics of the Baltic Sea

    Get PDF
    In the Baltic Sea, salinity and its large variability, both horizontal and vertical, are key physical factors in determining the overall stratification conditions. In addition to that, salinity and its changes also have large effects on various ecosystem processes. Several factors determine the observed two-layer vertical structure of salinity. Due to the excess of river runoff to the sea, there is a continuous outflow of water masses in the surface layer with a compensating inflow to the Baltic in the lower layer. Also, the net precipitation plays a role in the water balance and consequently in the salinity dynamics. The salinity conditions in the sea are also coupled with the changes in the meteorological conditions. The ecosystem is adapted to the current salinity level: a change in the salinity balance would lead to ecological stress of flora and fauna, and related negative effects on possibilities to carry on sustainable development of the ecosystem. The Baltic Sea salinity regime has been studied for more than 100 years. In spite of that, there are still gaps in our knowledge of the changes of salinity in space and time. An important part of our understanding of salinity are its long-term changes. However, the available scenarios for the future development of salinity are still inaccurate. We still need more studies on various factors related to salinity dynamics. Among others more knowledge is needed, e.g. from meteorological patterns in various space and time scales and mesoscale variability in precipitation. Also, updated information on river runoff and inflows of saline water is needed to close the water budget. We still do not understand accurately enough the water mass exchange between North Sea and Baltic Sea and within its sub-basins. Scientific investigations of the complicated vertical mixing processes are additionally required. This paper is a continuation and update of the BACC II book which was published in 2015, including information from articles issued until 2012. After that, there have been many new publications on the salinity dynamics, not least because of the Major Baltic Inflow which took place in December 2014. Several key topics have been investigated, including the coupling of long-term variations of climate with the observed salinity changes. Here the focus is on observing and indicating the role of climate change for salinity dynamics. New results of MBI-dynamics and related water mass interchange between the Baltic Sea and the North Sea have been published. Those studies also included results from the MBI-related meteorological conditions, variability in salinity and exchange of water masses between various scales. All these processes are in turn coupled with changes in the Baltic Sea circulation dynamics
    corecore