28 research outputs found

    Genome Mining and Comparative Genome Analysis Revealed Niche-Specific Genome Expansion in Antibacterial Bacillus pumilus Strain SF-4

    Get PDF
    The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future

    Molecular genetic studies of alkene metabolism in xanthobacter autotrophicus PY2

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Production, Optimization, and Partial Purification of Alkali-Thermotolerant Proteases from Newly Isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12

    No full text
    Proteases that can remain active under extreme conditions such as high temperature, pH, and salt concentration are widely applicable in the commercial sector. The majority of the proteases are rendered useless under harsh conditions in industries. Therefore, there is a need to search for new proteases that can tolerate and function in harsh conditions, thus improving their commercial value. In this study, 142 bacterial isolates were isolated from diverse alkaline soil habitats. The two highest protease-producing bacterial isolates were identified as Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12, respectively, based on 16S rRNA sequencing. Optimal protease production was detected at pH 8, 37 °C, 48 h, 5% (w/v) NaCl for Bacillus subtilis S1 (99.8 U/mL) and pH 9, 37 °C, 72 h, 10% (w/v) NaCl for Bacillus amyloliquefaciens KSM12 (94.6 U/mL). The molecular weight of these partially purified proteases was then assessed on SDS-PAGE (17 kDa for Bacillus subtilis S1 and 65 kDa for Bacillus amyloliquefaciens KSM12), respectively. The maximum protease activity for Bacillus subtilis S1 was detected at pH 8, 40 °C, and for Bacillus amyloliquefaciens KSM12 at pH 9, 60 °C. These results suggest that the proteases secreted by Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12 are suitable for industries working in a highly alkaline environment

    Mutation-Structure-Function Relationship Based Integrated Strategy Reveals the Potential Impact of Deleterious Missense Mutations in Autophagy Related Proteins on Hepatocellular Carcinoma (HCC): A Comprehensive Informatics Approach

    No full text
    Autophagy, an evolutionary conserved multifaceted lysosome-mediated bulk degradation system, plays a vital role in liver pathologies including hepatocellular carcinoma (HCC). Post-translational modifications (PTMs) and genetic variations in autophagy components have emerged as significant determinants of autophagy related proteins. Identification of a comprehensive spectrum of genetic variations and PTMs of autophagy related proteins and their impact at molecular level will greatly expand our understanding of autophagy based regulation. In this study, we attempted to identify high risk missense mutations that are highly damaging to the structure as well as function of autophagy related proteins including LC3A, LC3B, BECN1 and SCD1. Number of putative structural and functional residues, including several sites that undergo PTMs were also identified. In total, 16 high-risk SNPs in LC3A, 18 in LC3B, 40 in BECN1 and 43 in SCD1 were prioritized. Out of these, 2 in LC3A (K49A, K51A), 1 in LC3B (S92C), 6 in BECN1 (S113R, R292C, R292H, Y338C, S346Y, Y352H) and 6 in SCD1 (Y41C, Y55D, R131W, R135Q, R135W, Y151C) coincide with potential PTM sites. Our integrated analysis found LC3B Y113C, BECN1 I403T, SCD1 R126S and SCD1 Y218C as highly deleterious HCC-associated mutations. This study is the first extensive in silico mutational analysis of the LC3A, LC3B, BECN1 and SCD1 proteins. We hope that the observed results will be a valuable resource for in-depth mechanistic insight into future investigations of pathological missense SNPs using an integrated computational platform

    Structure-Function Mutational Analysis and Prediction of the Potential Impact of High Risk Non-Synonymous Single-Nucleotide Polymorphism on Poliovirus 2A Protease Stability Using Comprehensive Informatics Approaches

    No full text
    Polio viral proteinase 2A performs several essential functions in genome replication. Its inhibition prevents viral replication, thus making it an excellent substrate for drug development. In this study, the three-dimensional structure of 2A protease was determined and optimized by homology modelling. To predict the molecular basis of the interaction of small molecular agonists, docking simulations were performed on a structurally diverse dataset of poliovirus 2A protease (PV2Apr°) inhibitors. Docking results were employed to identify high risk missense mutations that are highly damaging to the structure, as well as the function, of the protease. Intrinsic disorder regions (IDRs), drug binding sites (DBS), and protein stability changes upon mutations were also identified among them. Our results demonstrated dominant roles for Lys 15, His 20, Cys 55, Cys 57, Cys 64, Asp 108, Cys 109 and Gly 110, indicating the presence of various important drug binding sites of the protein. Upon subjecting these sites to single-nucleotide polymorphism (SNP) analysis, we observed that out of 155 high risk SNPs, 139 residues decrease the protein stability. We conclude that these missense mutations can affect the functionality of the 2A protease, and that identified protein binding sites can be directed for the attachment and inhibition of the target proteins
    corecore