4,085 research outputs found

    VideoGraph: Recognizing Minutes-Long Human Activities in Videos

    Get PDF
    Many human activities take minutes to unfold. To represent them, related works opt for statistical pooling, which neglects the temporal structure. Others opt for convolutional methods, as CNN and Non-Local. While successful in learning temporal concepts, they are short of modeling minutes-long temporal dependencies. We propose VideoGraph, a method to achieve the best of two worlds: represent minutes-long human activities and learn their underlying temporal structure. VideoGraph learns a graph-based representation for human activities. The graph, its nodes and edges are learned entirely from video datasets, making VideoGraph applicable to problems without node-level annotation. The result is improvements over related works on benchmarks: Epic-Kitchen and Breakfast. Besides, we demonstrate that VideoGraph is able to learn the temporal structure of human activities in minutes-long videos

    Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

    Get PDF
    Event detection in unconstrained videos is conceived as a content-based video retrieval with two modalities: textual and visual. Given a text describing a novel event, the goal is to rank related videos accordingly. This task is zero-exemplar, no video examples are given to the novel event. Related works train a bank of concept detectors on external data sources. These detectors predict confidence scores for test videos, which are ranked and retrieved accordingly. In contrast, we learn a joint space in which the visual and textual representations are embedded. The space casts a novel event as a probability of pre-defined events. Also, it learns to measure the distance between an event and its related videos. Our model is trained end-to-end on publicly available EventNet. When applied to TRECVID Multimedia Event Detection dataset, it outperforms the state-of-the-art by a considerable margin.Comment: IEEE CVPR 201

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity

    Full text link
    In this paper we deal with a nonlinear Schr\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.Comment: 4 pages, 6 figure
    corecore