
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

VideoGraph: Recognizing Minutes-Long Human Activities in Videos

Hussein, N.; Gavves, E.; Smeulders, A.W.M.

Publication date
2019
Document Version
Final published version

Link to publication

Citation for published version (APA):
Hussein, N., Gavves, E., & Smeulders, A. W. M. (2019). VideoGraph: Recognizing Minutes-
Long Human Activities in Videos. Paper presented at 1st Workshop on Graph Based Learning
in Computer Vision, Seoul, Korea, Republic of. https://arxiv.org/abs/1905.05143

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/videograph-recognizing-minuteslong-human-activities-in-videos(d3aa36c8-9e09-44eb-a2d0-f827372bba33).html
https://arxiv.org/abs/1905.05143

VideoGraph: Recognizing Minutes-Long Human Activities in Videos

Noureldien Hussein, Efstratios Gavves, Arnold W.M. Smeulders
QUVA Lab, University of Amsterdam

{nhussein, egavves, a.w.m.smeulders}@uva.nl

Abstract

Many human activities take minutes to unfold. To repre-
sent them, related works opt for statistical pooling, which
neglects the temporal structure. Others opt for convolu-
tional methods, as CNN and Non-Local. While successful
in learning temporal concepts, they fall short of modeling
minutes-long temporal dependencies. We propose Video-
Graph, a method to achieve the best of two worlds: rep-
resent minutes-long human activities and learn their un-
derlying temporal structure. To represent human activities,
VideoGraph learns a soft version of an undirected graph.
The graph nodes are deterministic and are learned en-
tirely from video datasets, making VideoGraph applicable
to video understanding tasks without node-level annotation.
While the graph edges are probabilistic and are learned in
a soft-assignment manner. The result is improvements over
related works on benchmarks: Breakfast, Epic-Kitchens
and Charades. Besides, we demonstrate that VideoGraph
is able to learn the temporal structure of human activities
in minutes-long videos.

1. Introduction
Human activities in videos can take many minutes to un-

fold, each is packed with plentiful of fine-grained visual de-
tails. Take for example two activities: “making pancake” or
“preparing scrambled eggs”. The question is what makes
a difference between these two activities? Is it the fine-
grained details in each, or the overall painted picture by
each? Or both?

The goal of this paper is to recognize minutes-long hu-
man activities as defined by [1], also referred to as com-
plex actions in [2]. A long-range activity consists of a
set of unit-actions [1], also known as one-actions [2]. For
example, the activity of “making pancakes” includes unit-
actions: “cracking egg”, “pour milk” and “fry pancake”.
Some of these unit-actions are crucial to distinguish the ac-
tivity. For example, the unit-action “cracking egg” is all
what needed to discriminate the activity of “making pan-
cakes” from “preparing coffee”. Also, long-range activity is

take cup

pour coffee pour milk

spoon sugar stir coffee

pour sugar

Figure 1: The activity of “preparing coffee” can be repre-
sented as undirected graph of unit-actions. We are inspired
by graphs to represent this activity. The reason is that a
graph can portray the many ways one can carry out such ac-
tivity. More over, it preserves the temporal structure of the
unit-actions. Reproduced from [1].

recognized only in its entirety, as its unit-actions are insuf-
ficient by themselves. For example, only a short video snip-
pet of unit-action “cracking egg” cannot tell apart “making
pancake” from “preparing scrambled eggs”, as both activ-
ities share the same unit-action “cracking egg”. Added to
this, the temporal order of unit-actions for a specific activ-
ity may be permuted. There exist different orders of how we
can carry out an activity, like “prepare coffee”, see figure 1.
Nonetheless, there exist some sort of temporal structure for
such activity. One can start “preparing coffee” by “taking
cup” and usually end up with “pour sugar” and “stir cof-
fee”. So, to recognize long-range human activities, goals
to be met are: modeling the temporal structure of the ac-
tivity in its entirety, and occasionally paying attention to its
fine-grained details.

There exist two distinct approaches for long-range tem-
poral modelling. The first approach is orderless model-
ing. Statistical pooling [3] and vector encoding [4, 5] are
used to aggregate video information over time. The up-
side is the ability to address seemingly minutes- or even
hours-long videos. The downside, however, is the inability
to learn temporal patterns and the arrow-of-time [6]. Both
are proven to be crucial for some tasks [7, 8]. The second
approach is order-ware modelling. 3D CNN is proven to
be successful in learning spatiotemporal concepts for short
video snippets with strict temporal pattern [9]. Careful de-
sign choices enable them to model up to minute-long tem-

1

ar
X

iv
:1

90
5.

05
14

3v
2

 [
cs

.C
V

]
 1

3
O

ct
 2

01
9

poral dependencies [2]. But for minutes-long human ac-
tivities, the strict temporal pattern no longer exists. So,
the question arises: how to model the temporal structure
of minutes or even hour-long human activities?

This paper proposes VideoGraph, a graph-inspired repre-
sentation to achieve the aforementioned goal. A soft version
of undirected graph in learned completely from the dataset.
The graph nodes represent the key latent concepts of which
the human activity is composed. These latent concepts are
analogous to one-actions. While the graph edges represent
the temporal relationship between these latent concepts, i.e.
the graph nodes. VideoGraph has the following novelties.
i. In its graph-inspired representation, VideoGraph models
human activity for up to thirty-minute videos, whereas the
state-of-the-art is one minute [2]. ii. A proposed node em-
bedding block to learn the graph nodes from data. This cir-
cumvents the node annotation burden for long-range videos,
and makes VideoGraph extensible to video datasets without
node-level annotation. iii. A novel graph embedding layer
to learn the relationships between graph nodes. The out-
come is representing the temporal structure of long-range
human activities. The result is achieving improvements
on benchmarks for human activities: Breakfast [1], Epic-
Kitchens [10] and Charades [11].

2. Related Work

Orderless v.s. Order-aware Temporal Modeling. Be it
short-, mid-, or long-range human activities, when it comes
to temporal modeling, related methods are divided into two
main families: orderless and order-aware. In orderless
methods, the main focus is the statistical pooling of tem-
poral signals in videos, without considering their temporal
order or structure. Different pooling strategies are used, as
max and average pooling [3], attention pooling [12], and
context gating [13], to name a few. A similar approach is
vector aggregation, for example: Fisher Vectors [14] and
VLAD [4, 5]. Although statistical pooling can trivially
scale up to extremely long sequences in theory, this comes
at a cost of losing the temporal structure, reminiscent of
Bag-of-Words losing spatial understanding.

In order-aware methods, the main attention is payed to
learning structured or ordered temporal patterns in videos.
For example, LSTMs [15, 16], CRF [17], 3D CNNs [18,
9, 19, 20, 21]. Others propose temporal modeling layers
on top of backbone CNNs, as in Temporal-Segments [22],
Temporal-Relations [23] and Rank-Pool [24]. The outcome
of order-aware methods is substantial improvements over
their orderless counterparts in standard benchmarks [25,
26, 27]. Nevertheless, both temporal footprint and com-
putational cost remain the main bottlenecks to learn long-
range temporal dependencies. The best methods [2, 21]
can model as much as 1k frames (∼30 seconds), which is

a no match to minutes-long videos. This paper strives for
the best of two worlds: learning the temporal structure of
human activities in minutes-long videos.

Short-range Actions v.s. Long-range Activities.
Huge body of work is dedicated to recognizing hu-

man actions that take few seconds to unfold. Examples
of well-established benchmarks are: Kinetics [25], Sports-
1M [28], YouTube-8M [29], Moments in Time [30], 20B-
Something [31] and AVA [32]. For these short- or mid-
range actions, [7] demonstrates that a few frames suffice for
a successful recognition. Other strands of work shift their
attention to human activities that take minutes or even an
hour to unfold. Cooking-related activities are good exam-
ples, as in YouCook [33], Breakfast [1], Epic-Kitchens [10],
MPII Cooking [34] or 50-Salads [35]. Other examples in-
clude instructional videos: Charades [11], and unscripted
activities: EventNet [36], Multi-THUMOS [37].

In all cases, several works [1, 2, 34, 38] define the differ-
ences between short- and long-range human actions, albeit
with a different naming or terms. We follow the same def-
inition of [1]. More formally, we use unit-actions to refer
to fine-grained, short-range human actions, and activities to
refer to long-range complex human activities.

Graph-based Representation. Earlier, graph-based repre-
sentation has been used in storytelling [39, 40], and video
retrieval [41]. Different works use graph convolutions to
learn concepts and/or relationships from data [42, 43, 44].
Recently, graph convolutions are applied to image under-
standing [45], video understanding [46, 47, 48, 49] and
question answering [50]. Despite their success in learn-
ing structured representations from video datasets, the main
limitation of graph convolution methods is requiring the
graph nodes and/or edges to be known a priori. Conse-
quently, when node or frame-level annotations are not avail-
able, using these methods is hard. In contrast, this paper
aims for a graph-inspired representation in which the graph
nodes are fully inferred from data. The result is that our pa-
per is extensible to datasets without node-level annotations.

Self-Attention is used extensively in language under-
standing [51]. The recently proposed the transformer
block shows substantial improvements in machine trans-
lation [52], image recognition [21] and video understand-
ing [48, 53] or even graph representations [54]. The trans-
former block [53] attends to a local feature conditioned on
both local and global context. That is why it outperforms
the self-attention mechanism [55, 56, 57], which is condi-
tioned on only the local feature.

A video of human activity consists of short snippets of
unit-actions. This paper is inspired by all these attention
mechanisms to attend to a unit-action (i.e. local feature)
based on the surrounding activity (i.e. global context).

2

𝑠𝑇

⋅⋅⋅

3D CNN

𝑠1
Node

Attention

Latent Concepts

𝑥1

𝑌
𝑍1

Graph
Embedding Dense

‧‧
‧

Predictions

⋅⋅⋅

𝑍𝑇

⋅⋅⋅

𝑥𝑇

Video
Segment

Figure 2: Overview of VideoGraph. It takes as input a video segment si of 8 frames from an activity video v. Then, it
represents it using standard 3D CNN, .e.g I3D. The corresponding feature representation is xi. Then, a node attention block
attends to a set of N latent concepts based on their similarities with xi, which results in the node-attenative representation
Zi. A novel graph embedding layer then processes Zi to learn the relationships between its latent concepts, and arrives at the
final video-level representation. Finally, an MLP is used for classification.

3. Method

Motivation. We observe that a minutes-long and com-
plex human activity usually is sub-divided into unit-actions.
Similar understanding is concluded by [1, 2], see Fig. 1.
So, one can learn the temporal dependencies between
these unit-actions using methods for sequence modeling in
videos, as LSTM [15] or 3D CNN [20]. However, these
methods face the following limitations. First, such activities
may take several minutes or even hours to unfold. Second,
as video instances of the same activity are usually wildly
different, there is no single temporal sequence that these
methods can learn. For example, one can “prepare coffee”
in many different ways, as the various paths in Fig. 1 indi-
cate. Nevertheless, there seems to be an over-arching weak
temporal structure of unit-actions when making a coffee.

We are inspired by graphs to represent the temporal
structure of the human activities in videos. The upside is the
ability of a graph-based representation to span minutes- or
even hour-long temporal sequence of unit-actions while pre-
serving their temporal relationships. The proposed method,
VideoGraph, is depicted in Fig. 2, and in the following, we
discuss its details.

VideoGraph.
We start from a video v comprising T randomly sampled

video segments v = {si | i = 1, 2, ..., T}. Each segment si
is a burst of 8 successive video frames, and represented as
feature xi ∈ R1×H×W×C using standard 3D CNN, for exam-
ple I3D [9], where C is the number of channels, H,W are
height and width of the channels. Our goal is to construct an
undirected graph G = (N , E) to represent the structure of
human activity in video v. The graph nodes N would then
capture the key unit-actions in the activity. And the graph
edges E would capture the temporal relationship between
these nodes (i.e. unit-actions).

Learning The Graph Nodes. In a dataset of human activ-
ities, unit-actions can be thought of as the dominant latent

short-range concepts. That is, unit-actions are the build-
ing blocks of the human activity. So, in a graph-inspired
representation of the activity, these unit-actions can act as
the graph nodes N . Assuming that it is prohibitively ex-
pensive to have unit-actions annotation for minutes-long
videos, a challenge is how to represent them? In other
words, how to represent the graph nodes? As a remedy, we
opt for learning a set of N latent features Y , Y = {yj | j =
1, 2, ..., N}, Y ∈ RN×C . These features Y then become the
vector representation of the graph nodes N , i.e. Y ≡ N .

A problem, however, is how to correlate each video
feature xi with each node in Y . To solve this, we pro-
pose the node attention block, inspired by self-attention
block [21, 52, 48], shown in Fig. 3a. The node attention
block takes as an input a feature xi and all the node features
Y . Then, it transforms the initial representation of the nodes
from Y into Ŷ , using one hidden layer MLP with weight
and bias w ∈ RC×C , b ∈ R1×C . This transformation makes
the nodes learnable and better suited for the dataset inhand.
Then, a dot product ⊗ is used to measure the similarity be-
tween xi and Ŷ . An activation function σ is applied on the
similarities to introduce non-linearity. The result is the ac-
tivation values α ∈ RH×W×N . The last step is multiplying
all the nodes Ŷ with the activation values α, such that we
attend to each node ŷj by how much it is related to the fea-
ture xi. Thus, the node attention block outputs the attended
nodes Zi = {zij | j = 1, 2, ..., N}, Zi ∈ RN×H×W×C . We
refer to Zi as node-attentive feature, and we refer to zij as
the j-th node feature in Zi. More formally,

Ŷ = w ∗ Y + b (1)

α = σ(xi ∗ Ŷ T) (2)

Zi = α� Ŷ
= αj � yj , j = 1, 2, ..., N (3)

Hence, the vector representation of all video segments is a
5D tensor Z = {Z1, Z2, ..., ZT },Z ∈ RT×N×H×W×C . The

3

names of 5 dimensions in Z are: timesteps, nodes, width,
height and channels. From now on, we use these 5 dimen-
sions to express feature vectors and convolutional kernels.

In sum, the node attention block takes a feature xi, cor-
responding to a short video segment si and measures how
similar α it is to learned set of latent concepts Ŷ . The simi-
larities α are then used to attend to the latent concepts. This
is crucial for recognizing long-range videos, where the net-
work is not feed-forwarded only with a short video segment
xi but with global representation Y . This gives the network
the ability for focus on both local video signal xi and global
learned context Ŷ .

×

𝑥𝑖 Y

Dense

Activation

N × 𝐶HW × C

𝛼

N × C

HW × C N × C

𝑌

HW ×N

N × HW × C 𝑍𝑖

𝒁

(b) Graph Embedding Layer(a) Node Attention Block

Time Conv1D

T × N × HW × C

Node Conv1D

Channel Conv3D

MaxPool

T

4
×
𝑁

4
× HW × C

BN + ReLU

Figure 3: (a) Node attention block measures similarities α
between segment feature xi and learned nodes Ŷ . Then,
it attends to each node in Ŷ using α. The result is the
node-attentive feature Zi expressing how similar each node
to xi. (b) Graph Embedding layer models a set of T suc-
cessive node-attentive features Z using 3 types of convo-
lutions. i. Timewise Conv1D learns the temporal tran-
sition between node-attentive features {Zi, ..., Zi+t}. ii.
Nodewise Conv1D learns the relationships between nodes
{zi,j , ..., zi,j+n}. iii. Channelwise Conv3D updates the rep-
resentation for each node zij .

Our node attention block is different from the non-local
counterpart [21] in twofold. First, the attention values are
conditioned on local xi and global Ŷ signals. Second, non-
local does tensor product between attention values α and
local signal xi, while we attend by scalar multiplication be-
tween α, Ŷ to retrain the node dimension. Lastly, our node
attention block is much more simpler than the non-local, as
we use only one fully-connected layer.

Learning The Graph Edges. Up till now, we have learned
the graph nodes Ŷ . We have also represented each video
segment si in terms of the nodes, as node-attentive feature
Zi. Next, we would like to learn the graph edges E , and
arrive at the final graph structure. To this end, we propose
a novel graph embedding layer, shown in Fig. 3b. Regard-

ing the graph edges, we are interested in two types of re-
lationships. First, we are interested in the relationship be-
tween graph nodes. Loosely speaking, if nodes stand for
unit-actions as “pour milk”, “crack egg”, we would like to
learn how correlated are these two unit-actions when used in
different activities as “make pancake” or “prepare coffee”.
Second, we are interested in how the graph nodes transition
over time. For instance, we want to encode the significance
of unit action “pour milk” comes after or before “crack egg”
when it comes to recognizing “make pancake”. Let’s take t
successive video segments {si, ..., si+t}. When processed
by CNN and node attention block, they are represented as
{Zi, ..., Zi+t}. To learn the temporal transition between
them, we apply a one-dimensional convolution, (Conv1D)
on the temporal dimension only. These timewise Conv1D,
proposed by [2], are efficient in learning temporal concepts.
One kernel learned by timewise Conv1D is the 5D tensor
kT ∈ Rt×1×1×1×1, where t is the kernel size. In total, we
learn C kernels to keep the channel dimension of the fea-
tures Z unchanged.

𝑍1

⋅⋅⋅

𝑍2

𝑍𝑇

𝒁

(a) Timewise Conv1D

𝑘𝑇

𝑍1

⋅⋅⋅

𝑍2

𝑍𝑇

(b) Nodewise Conv1D

𝑘𝑁

Figure 4: (a) Timewise Conv1D learns the temporal transi-
tion between successive nodes-embeddings {Zi, ..., Zi+t}
using kernel kT of kernel size t. (b) Nodewise
Conv1D learns the relationships between consecutive nodes
{zi,j , ..., zi,j+n} using kernel kN of kernel size n.

Besides learning the temporal transition between node-
attentive features {Zi, ..., Zi+t}, we also want to learn
the relationship between the nodes themselves {zij | j =
1, 2, ..., N} inside each node-attentive featureZi. The prob-
lem is that the adjacency matrix, which defines the graph
structure, is unkown. A naive approach is to assume all
nodes are connected. This leads to an explosion of N2

edges – prohibitive to learn. To overcome this, we restrict
the number of adjacents (i.e. neigbours) each node zij can
have. In other words, we assume that each node zij is adja-
cent to only n other nodes. This makes it possible to learn
edge weights using one-dimensional convolution, applied
on only the node dimension of Zi. We call this convo-
lution nodewise Conv1D. One kernel learned by nodewise
Conv1D is the 5D tensor kN ∈ R1×n×1×1×1, where n is the
kernel size. In sum, we learn C kernels to keep the channel
dimension of the features Z unchanged.

Both timewise and nodewise Conv1D learn graph edges

4

separately for each channel in the features Z. That is why
we follow up with a typical spatial convolution (Conv2D)
to model the cross-channel correlations in each node feature
zij . Spatial Conv2D learns C different kernels, each is the
5D tensor kC ∈ R1×1×1×1×C .

Having learned the graph edges using convolutional op-
erations, we proceed with BatchNormalization and ReLU
non-linearity. Finally, we downsample the entire graph rep-
resentation Z over both time and node dimensions using
MaxPooling operation. It uses kernel size 3 and stride 3 for
both the time and node dimensions. Thus, after one layer of
graph embedding, the result graph representation is reduced
from T×N×H×W×C to (T/3)×(N/3)×H×W×C.

4. Experiments

Implementation. When training VideoGraph on a video
dataset, we uniformly sample T = 64 video segments
from each video v. One segment si is a burst of 8 suc-
cessive frames. When the 64 segments are fed-forward to
I3D up to the last convolutional layer res5 c, the cor-
responding convolutional features for the entire video is
X = {xi | i = 1, 2, ..., 64},X ∈ R64×7×7×1024. We use
N = 128 as the number of latent concepts. Both the video-
level features X and latent concepts Y ∈ R128×1024 are fed-
forward to the node attention block. The result is the graph
representation Z ∈ R128×64×7×7×1024. Then, Z is passed to
graph embedding layers to learn node edges and reduce the
feature representation. In graph embedding layer, we use
kernel size t = 7 for the timewise Conv1D and kernel size
n = 7 for the nodewise Conv1D. In total, we use 2 succes-
sive layers of graph embedding. Their output feature is then
feed-forwarded to a classifier to arrive at the vide-level pre-
dictions. The classifier uses 2 fully-connected layers with
BatchNormalization and ReLU non-linearity. We use soft-
max as the final activation for single-label classification or
sigmoid for multi-label classification.

VideoGraph is trained with batch-size 32 for 500 epoch.
It is optimized with SGD with 0.1, 0.9 and 0.00001 as learn-
ing rate, momentum and weight decay, respectively. It is
implemented using TensorFlow [58] and Keras [59].

4.1. Datasets

As this paper focus on human activities spanning many
minutes, we choose to conduct our experiments on the fol-
lowing benchmarks: Breakfast [1], Epic-Kitchens [10] and
Charades [11]. Other benchmarks for human activities con-
tain short-range videos, i.e. a minute or less, thus do not fall
within the scope of this paper.

Breakfast is a dataset for task-oriented human activities,
with the focus on cooking. It is a video classification task
of 12 categories of breakfast activities. It contains 1712
videos in total, 1357 for training and 335 for test. The av-

erage length of videos is 2.3 minutes. The activities are
performed by 52 actors, 44 for training and 8 for test. Hav-
ing different actors for training and test splits is a realistic
setup for testing generalization. Each video is represents
only one category of focus activity. Besides, each video has
temporal annotation of unit-actions comprising the activity.
In total, there are 48 classes of unit-actions. In our exper-
iments, we only use the activity annotation, and we don’t
use the temporal annotation of unit-actions.

Epic-Kitchens is a recently introduced large-scale dataset
for cooking activities. In total, it contains 274 videots per-
formed by 28 actors in different kitchen setups. Each video
represents a cooking different cooking activity. The aver-
age length of videos is 30 minutes, which makes it ideal for
experimenting very long-range temporal modeling. Origi-
nally, the task proposed by the dataset is classification on
short video snippets, with average length of ∼3.7 seconds.
The provided labels are, therefore, the categories of objects,
verbs and unit-actions in each video snippet. However, the
dataset does no provide video-level category. That is why
we consider all the object labels of a specific video as video-
level label. Hence, posing the problem as multi-label clas-
sification of these videos. This setup is exactly the same
used in Charades [11] for video classification. For perfor-
mance evaluation, we use mean Average Precision (mAP),
implemented in Sk-Learn [60].

Method Modality mAP (%)

Two-stream [17] RGB + Flow 18.6
Two-stream + LSTM [17] RGB + Flow 17.8
ActionVLAD [5] RGB + iDT 21.0
Temporal Fields [17] RGB + Flow 22.4
Temporal Relations [23] RGB 25.2

ResNet-152 [61] RGB 22.8
ResNet-152 + Timeception [2] RGB 31.6

I3D [9] RGB 32.9
I3D + ActionVLAD [5] RGB 35.4
I3D + Timeception [2] RGB 37.2
I3D + VideoGraph RGB 37.8

Table 1: VideoGraph outperforms related works using the
same backbone CNN. Results are for Charades dataset.

Charades is a dataset for multi-label classification of action
videos. It consists of 8k, 1.2k and 2k video for training,
validation and testing, respectively. is multi-label, action
classification, video dataset with 157 classes. Each video
spans 30 seconds and comprises of 6 unit-actions, on aver-
age. This is why we choose Charades, as it fits perfectly
to the needs of this paper. For evaluation, we use mAP, as
detailed in [11].

5

Method Breakfast Acc. (%) Breakfast mAP (%) Epic-Kitchens mAP (%)

ResNet-152 [61] 41.13 32.65 –
ResNet-152 + ActionVLAD [5] 55.49 47.12 –
ResNet-152 + Timeception [2] 57.75 48.47 –
ResNet-152 + VideoGraph 59.12 49.38 –

I3D [9] 58.61 47.05 48.86
I3D + ActionVLAD [5] 65.48 60.20 51.45
I3D + Timeception [2] 67.07 61.82 55.46
I3D + VideoGraph 69.45 63.14 55.32

Table 2: VideoGraph outperforms related works using the same backbone CNN. We experiment 2 different backbones: I3D
and ResNet-152. We experiment on two different tasks of Breakfast: single-label classification of activities and multi-label
classification of unit-actions. And for Epic-Kitchens, we experiment on the multi-label classification.

4.2. Experiments on Benchmarks

In this section, we experiment and evaluate VideoGraph
on benchmark datasets: Breakfast, Charades and Epic-
Kitchens, and we compare against related works. We
choose two strong methods to compare against. The first
is Timeception [2]. The reason is that it can model 1k
timesteps, which is up to a minute-long video. Another rea-
son is that Timeception is an order-ware temporal method.
The second related work is ActionVLAD [5]. The reason is
that it is a strong example of orderless method. It also can
aggregate temporal signal for very long videos.

VideoGraph resides on top of backbone CNN, be it
spatial 2D CNN, or spatio-temporal 3D CNN. So, in our
comparison, we use two backbone CNNs, namely ResNet-
152 [62] and I3D [9]. By default, I3D is designed to model
a short video segment of 8 frames. But thanks to the fully-
convolutional architecture, I3D can indeed process minutes-
long video. This is made possible by average pooling the
features of many videos snippets, in logit layer, i.e. before
softmax activation [9]. ResNet-152 is a frame-level classi-
fier. To extend it to video classification, we follow the same
approach used in I3D and average pool the logits, i.e. be-
fore softmax. In all the following comparisons, we use 512
frames, or 64 segments, per video as input to I3D. And we
use 64 frames per video as and input to ResNet-152.

Breakfast. Each video in this dataset depicts a complex
breakfast activity. Thus, the task inhand is single-label clas-
sification. The evaluation metric used is the classification
accuracy. We experiment our model on Breakfast, and we
compare against baseline methods. The results are reported
in table 2.

Epic-Kitchens.
When comparing VideoGraph against related works, see

table 2, Timeception and VideoGraph, we notice that we are
on bar with Timeception. VideoGraph performs better when
trained on single-label video dataset, where each video has

(a) (b)

Figure 5: Visualization of the learned graph nodes. In the
first 20 epoch during training (left), VideoGraph updates the
node features Ŷ to increase the pairwise distance between
them. That is, VideoGraph learns discriminant represen-
tations of the nodes. In the last 20 epoch during training
(right), the learning cools down and barely their representa-
tion is updated. We visualize using t-SNE [63].

one label. This gives VideoGraph an ample opportunity to
tailor the graph-inspired representation for each class. How-
ever, as mentioned, we pose the task in Epic-Kitchen as
multi-label classification. That is, no single category for a
video. That’s when VideoGraph does not perform as good.

Charades. In this experiment, we evaluate our model on
Charades dataset. And we compare the performance against
recent works. The results are reported in Table 1. Video-
Graph improves the performance of the backbone CNN. For
VideoGraph, Charades is particularly challenging dataset,
for two reasons. First, the average video length is 30 sec-
onds, and VideoGraph learns better representstion for long-
range videos. Second, it is a multi-label classification,
and that’s when VideoGraph is not able to learn category-
specific unique graph.

4.3. Learned Graph Nodes

The proposed node attention block, see figure 4a, learns
latent concept representation Ŷ using fully-connected layer.
This learning is conditioned on the initial value Y . We
found that this initial value is crucial for VideoGraph to con-

6

0 20 40 60 80 100
Epoch Number

0.05

0.06

0.07

Di
st

an
ce

Figure 6: The pairwise Euclidean distances between nor-
malized latent concepts Ŷ increases rapidly in the beginning
of the training, but it converges in the end.

verge. We experiment with 3 different types of initializa-
tion: i. random values, ii. Sobol sequence and iii. k-means
centroids. Random values seems to be a natural choice, as
all the learned weights in the model are randomly initial-
ized before training. Sobol sequence is a plausible choice,
as the sequence guarantees low discrepancies between the
initial values. The last choice has proven to be successful
in ActionVLAD [5]. The centroids are obtained by clus-
tering the feature maps of the last convolutional layer of
the backbone CNN. However, we do not find one winning
strategy across the benchmarks used. We find that Sobol se-
quence is the best choice for training on Epic-Kitchens and
Charades. While the random initialization gives the best re-
sults on Breakfast. In table 1, we report the performance
of VideoGraph using different initialization choices for the
latent concepts Y . In all cases, we see in figure 5 that the
node attention layer successfully learns discriminant repre-
sentations of latent concepts, as the training proceedes. In
other words, the networks learns to increase the Euclidean
distance between each pair of latent concepts. This is fur-
ther demonstrated in figure 6.

Initialization Epic-Kitchen mAP Breakfast Acc.

Random 54.12 69.45
Sobol 55.46 65.61
K-means Centroids 52.47 —

Table 3: The initialization of the latent concepts is cru-
cial for learning better representation Ŷ . We experimented
with 3 choices: random, sobol, and k-mean clustering. Yet,
there seems not to be one winning choice across different
datasets.

4.4. Learned Graph Edges

There are two types of graph edges, i.e. relationships,
uncovered by VideoGraph. First, the timewise edges, i.e.
how the nodes transition over time. Second, the nodewise
edges, i.e. relationships between nodes themselves. To this
end, we depend on the activation output of the second graph
embedding layer. In other words, we extract the ReLU acti-
vation values. For M videos belonging to a specific human

activity, the activation values are z1 ∈ RM×N×T×C , where
C is the number of channels, T is the number of timesteps,
and N is the number of nodes. First, we average the activa-
tions for all the videos, resulting in z2 ∈ RN×T×C . Then,
we average pool the activations over the temporal dimen-
sion, so we have z3 ∈ RN×C , summarizing the nodes rep-
resentations for all the videos belonging to the specific ac-
tivity. Finally, we measure the pairwise Euclidean distance
between each pair in z3. To plot the graph depicting the ac-
tivity, we use these distances as the edge between the nodes.
And to plot the nodes, we sum up the activations over the
channel dimension in z3. The result z4 ∈ RN is a scalar
value reflecting the importance of the node to the activ-
ity. The graph is plotted using Fruchterman-Reingold force-
directed algorithm, implemented in [64]. Figure 7 shows 10
different graph, each belonging to one human activity.

Importance of Temporal Structure. In this experiment,
we validate by how much VideoGraph depends on the tem-
poral structure and weak temporal order to recognize the
human activities. To this end, we choose Breakfast, as it is
temporally well-structured dataset. VideoGraph is trained
on ordered set of 64 timesteps. We alter the temporal or-
der of these timesteps and test the performance of Video-
Graph. We use different alterations: i. random order, and
ii. reversed order. Then, we measure the performance of
VideoGraph, as well as baselines, on Breakfast testset.

Temporal Structure Reversed (↓%) Random (↓%)

I3D 0.0 0.0
I3D + ActionVLAD 0.0 0.0

I3D + Timeception 44.1 56.2
I3D + VideoGraph 22.5 55.9

Table 4: The drop of performance of VideoGraph and
other models when changing the temporal order of the in-
put video. Both VideoGraph and Timeceptions suffer huge
drop in performace, as both are order-aware methods. On
the other hand, ActionVLAD retains the same performance,
as it is orderless method.

We notice, from table 4, a huge drop in performance
for both VideoGraph and Timeception. However, as ex-
pected, no drop in performance for ActionVLAD, as it is
completely orderless model. The conclusion is VideoGraph
encodes the temporal structure of the human activities in
breakfast. Added to this, it suffered slightly less drop in
performance than Timeception. More importantly, figure 8
shows the confusion matrix of classifiyng the videos of
Breakfast using two cases: i natural order of temporal video
segments, and ii. random order of the video segments. We
notice video graph makes more mistakes when trained on
random order. It mistakes “scrambled egg” for “fried egg”
if temporal order is neglected.

7

(a) Making Cereals (b) Preparing Coffee (c) Frying Eggs (d) Making Juice (e) Preparing Milk

(f) Making Pancake (g) Making Salad (h) Making Sandwich (i) Making Scrambled Egg (j) Preparing Tea

(k) Top related images to the nodes. These nodes are related to: cereal, pan, eggs, sandwich, kettle, and foodbox.

Figure 7: We visualize the relationship discovered by the first layer of graph embedding. Each sub-figure is related to one of
the 10 activities in Breafast dataset. In each graph, the nodes represent the latent concepts learned by graph-attention block.
Node size reflects how dominant the concept, while graph edges emphasize the relationship between these nodes.

1 2 3 4 5 6 7 8 910
cereals 1
coffee 2

fried egg 3
juice 4
milk 5

pancake 6
salat 7

sandwich 8
scrambled egg 9

tea 10

1 2 3 4 5 6 7 8 910

Figure 8: Confusion matrix for recognizing the 10 activity
of Breakfast. VideoGraph is trained on random (right) v.s.
correct temporal order (left). It mistakes “scrambled egg”
for “fried egg” if temporal order is neglected.

5. Conclusion

To successfully recognize minutes-long human activi-
ties such as “preparing breakfast” or “cleaning the house”,
we argued that a successful solution needs to capture both
the whole picture and attention to details. To this end, we

proposed VideoGraph, a graph-inspired representation to
model the temporal structure of such long-range human ac-
tivities. Firstly, thanks to the node attention layer, Video-
Graph can learn the graph nodes. This alleviate the need of
node-level annotation, which is prohibitive and expensive
in nowadays video dataset. Secondly, we proposed graph
embedding layer. It learns the relationship between graph
nodes and how these nodes transition over time. Also, it
compresses the graph representation to be feed for a clas-
sifier. We demonstrated the effectiveness of VideoGraph
on three benchmarks: Breakfast, Epic-Kitchens and Cha-
rades. VideoGraph achieves good performance on the three
of them. We also discussed some of the upsides and down-
side of VideoGraph.

References
[1] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-
directed human activities. In CVPR, 2014.

8

[2] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Timeception for complex action recognition. In
arXiv, 2018.

[3] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Unified embedding and metric learning for zero-
exemplar event detection. In CVPR, 2017.

[4] Ionut C Duta, Bogdan Ionescu, Kiyoharu Aizawa, and Nicu
Sebe. Spatio-temporal vlad encoding for human action
recognition in videos. In ICMM, 2017.

[5] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,
and Bryan Russell. Actionvlad: Learning spatio-temporal
aggregation for action classification. In CVPR, 2017.

[6] Amir Ghodrati, Efstratios Gavves, and Cees GM Snoek.
Video time: Properties, encoders and evaluation. In BMVC,
2018.

[7] Gunnar A Sigurdsson, Olga Russakovsky, and Abhinav
Gupta. What actions are needed for understanding human
actions in videos? In ICCV, 2017.

[8] De-An Huang, Vignesh Ramanathan, Dhruv Mahajan,
Lorenzo Torresani, Manohar Paluri, Li Fei-Fei, and
Juan Carlos Niebles. What makes a video a video: Ana-
lyzing temporal information in video understanding models
and datasets. In CVPR, 2018.

[9] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017.

[10] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Scaling egocentric vision: The epic-kitchens dataset. In
ECCV, 2018.

[11] Gunnar A Sigurdsson, Gúl Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In ECCV, 2016.

[12] Rohit Girdhar and Deva Ramanan. Attentional pooling for
action recognition. In NIPS, 2017.

[13] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable
pooling with context gating for video classification. In arXiv,
2017.

[14] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. Action
and event recognition with fisher vectors on a compact fea-
ture set. In ICCV, 2013.

[15] Xinyu Li, Yanyi Zhang, Jianyu Zhang, Shuhong Chen, Ivan
Marsic, Richard A Farneth, and Randall S Burd. Concurrent
activity recognition with multimodal cnn-lstm structure. In
arXiv, 2017.

[16] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In CVPR, 2015.

[17] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Ab-
hinav Gupta. Asynchronous temporal fields for action recog-
nition. In CVPR, 2017.

[18] Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region
convolutional 3d network for temporal activity detection. In
ICCV, 2017.

[19] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018.

[20] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding. In arXiv, 2017.

[21] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, 2018.

[22] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In ECCV, 2016.

[23] Bolei Zhou, Alex Andonian, and Antonio Torralba. Tempo-
ral relational reasoning in videos. In arXiv, 2017.

[24] Basura Fernando, Efstratios Gavves, José Oramas, Amir
Ghodrati, and Tinne Tuytelaars. Rank pooling for action
recognition. In TPAMI, 2017.

[25] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. In arXiv, 2017.

[26] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In ICCV, 2011.

[27] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. In arXiv, 2012.

[28] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In CVPR,
2014.

[29] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Nat-
sev, George Toderici, Balakrishnan Varadarajan, and Sud-
heendra Vijayanarasimhan. Youtube-8m: A large-scale
video classification benchmark. In arXiv, 2016.

[30] Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, Alex
Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown,
Quanfu Fan, Dan Gutfruend, Carl Vondrick, et al. Moments
in time dataset: one million videos for event understanding.
In arXiv, 2018.

[31] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The ”something something” video
database for learning and evaluating visual common sense.
In ICCV, 2017.

[32] Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Car-
oline Pantofaru, David A Ross, George Toderici, Yeqing Li,
Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. In arXiv, 2017.

[33] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
automatic learning of procedures from web instructional
videos. In AAAI, 2018.

[34] Marcus Rohrbach, Anna Rohrbach, Michaela Regneri,
Sikandar Amin, Mykhaylo Andriluka, Manfred Pinkal, and
Bernt Schiele. Recognizing fine-grained and composite ac-
tivities using hand-centric features and script data. In IJCV,
2016.

9

[35] Sebastian Stein and Stephen J McKenna. Combining em-
bedded accelerometers with computer vision for recognizing
food preparation activities. In ACM PUC, 2013.

[36] Guangnan Ye, Yitong Li, Hongliang Xu, Dong Liu, and
Shih-Fu Chang. Eventnet: A large scale structured concept
library for complex event detection in video. In ACM MM,
2015.

[37] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-
driluka, Greg Mori, and Li Fei-Fei. Every moment counts:
Dense detailed labeling of actions in complex videos. In
IJCV, 2018.

[38] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Ac-
tom sequence models for efficient action detection. In CVPR,
2011.

[39] Gunhee Kim and Eric P Xing. Reconstructing storyline
graphs for image recommendation from web community
photos. In CVPR, 2014.

[40] Bo Xiong, Gunhee Kim, and Leonid Sigal. Storyline repre-
sentation of egocentric videos with an applications to story-
based search. In CVPR, 2015.

[41] Jia-Yu Pan and Christos Faloutsos. Videograph: a new tool
for video mining and classification. In ACM/IEEE-CS DL,
2001.

[42] Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. Learning convolutional neural networks for graphs.
In ICML, 2016.

[43] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In NIPS, 2016.

[44] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR, 2017.

[45] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng
Yan, Jiashi Feng, and Yannis Kalantidis. Graph-based global
reasoning network. In arXiv, 2018.

[46] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In ECCV, 2018.

[47] Huang De-An, Shyamal Buch, Lucio Dery, Animesh Garg,
Li Fei-Fei, and Juan Carlos Niebles. Finding “it”: Weakly-
supervised reference-aware visual grounding in instructional
videos. In CVPR, 2018.

[48] Rohit Girdhar, Joäo Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In arXiv, 2018.

[49] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh
Garg, Li Fei-Fei, Silvio Savarese, and Juan Carlos Niebles.
Neural task graphs: Generalizing to unseen tasks from a sin-
gle video demonstration. In arXiv, 2018.

[50] Shaojie Wang, Wentian Zhao, Ziyi Kou, and Chenliang Xu.
How to make a blt sandwich? learning to reason towards
understanding web instructional videos. In arXiv, 2018.

[51] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos,
Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A
structured self-attentive sentence embedding. In ICLR, 2017.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017.

[53] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krähenbühl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In arXiv,

2018.
[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. In ICLR, 2018.

[55] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,
and Cees GM Snoek. Videolstm convolves, attends and flows
for action recognition. CVIU, 2018.

[56] Yang Du, Chunfeng Yuan, Bing Li, Lili Zhao, Yangxi Li, and
Weiming Hu. Interaction-aware spatio-temporal pyramid at-
tention networks for action classification. In ECCV, 2018.

[57] Zhengyuan Yang, Yuncheng Li, Jianchao Yang, and Jiebo
Luo. Action recognition with spatio-temporal visual atten-
tion on skeleton image sequences. In IEEE ToCS, 2018.

[58] Martı́n Abadi et al. Tensorflow. tensorflow.org, 2015.
[59] François Chollet et al. Keras. keras.io, 2015.
[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. JMLR, 2011.

[61] Charades algorithms. github.com/gsig/
charades-algorithms, 2017.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[63] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 2008.

[64] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring network structure, dynamics, and function using net-
workx. In SciPy, 2008.

10

tensorflow.org
keras.io
github.com/gsig/charades-algorithms
github.com/gsig/charades-algorithms

	1 . Introduction
	2 . Related Work
	3 . Method
	4 . Experiments
	4.1 . Datasets
	4.2 . Experiments on Benchmarks
	4.3 . Learned Graph Nodes
	4.4 . Learned Graph Edges

	5 . Conclusion

