8 research outputs found

    Prevalence of dry eye and tear film changes in diabetic population: experience at our tertiary care centre

    Get PDF
    Background: Abnormalities in tear secretion, alteration of epithelial barrier and autonomic neuropathy lead to tear film and ocular surface changes in diabetes, thus causing dry eye. Aim was the evaluation of tear film and ocular surface of diabetic patients and to assess the prevalence of dry eye in diabetic patients presenting to our department. Methods: It was prospective, observational study. Visual acuity was tested for all the patients and slit lamp evaluation was done followed by staining methods to evaluate dry eye. The parameters included ocular symptoms, Schirmer test, tear meniscus height, tear film breakup time, corneal staining with fluorescein, conjunctival staining, presence of strands/filaments and presence of diabetic retinopathy. Results: A total of 200 diabetic patients were assessed. Forty percent had the duration of diabetes mellitus ranging between 6-10 years. Majority of patients were having grittiness (54%). Around 32% of the study participants are having dry eye. On Schirmer test majority (43%) were having 6-10 mm. 69% of the study participants were having more than 1 mm of tear meniscus height. Majority (69%) of the study participants had more than 10 sec tear film breakup time. 18% of the study participants were having positive conjunctival staining and 18% of the study participants were having positive corneal staining. 13% of the study participants are having filaments/strands. Conclusions: The incidence of dry eye was seen to increase with increasing duration of diabetes and increasing age. Careful elicitation of history followed by proper evaluation to diagnose dry eye is emphasized

    Wasserstein GAN based Chest X-Ray Dataset Augmentation for Deep Learning Models: COVID-19 Detection Use-Case

    Get PDF
    “© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”The novel coronavirus infection (COVID-19) is still continuing to be a concern for the entire globe. Since early detection of COVID-19 is of particular importance, there have been multiple research efforts to supplement the current standard RT-PCR tests. Several deep learning models, with varying effectiveness, using Chest X-Ray images for such diagnosis have also been proposed. While some of the models are quite promising, there still remains a dearth of training data for such deep learning models. The present paper attempts to provide a viable solution to the problem of data deficiency in COVID-19 CXR images. We show that the use of a Wasserstein Generative Adversarial Network (WGAN) could lead to an effective and lightweight solution. It is demonstrated that the WGAN generated images are at par with the original images using inference tests on an already proposed COVID-19 detection model

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    Wasserstein GAN based Chest X-Ray Dataset Augmentation for Deep Learning Models: COVID-19 Detection Use-Case

    Get PDF
    From Crossref proceedings articles via Jisc Publications RouterHistory: ppub 2022-07-11, issued 2022-07-11Publication status: Publishe

    Deep Learning Based Lightweight Model for Brain Tumor Classification and Segmentation

    No full text
    This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-47508-5_38]. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.This paper presents two lightweight deep learning models for efficient detection and segmentation of brain tumors from MRI scans. A custom-made Convolutional Neural Network (CNN) is designed for identification of four different classes of brain tumors viz. Meningioma, Glioma, Pituitary brain tumor and normal (no tumor). Furthermore, another tailor-made lightweight model is presented for the segmentation of the tumor from the Magnetic Resonance Imaging (MRI) scans. The output of the segmentation model is the ‘mask’ depicting the tumor region. The overall performance in terms of detection accuracy, and segmentation accuracy, for the two models is found to be approximately 95% for both the cases individually. The proposed models are worthy additions to the existing literature on brain tumor classification and segmentation models due to their low-parameter count which make the models amenable for deployment on resource-constrained edge hardware

    Alzheimer Brain Imaging Dataset Augmentation Using Wasserstein Generative Adversarial Network

    No full text
    This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-981-99-7814-4_39]. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.Deep learning models have evolved to be very efficient and robust for several computer vision applications. To harness the benefits of state-of-the-art deep networks in the realm of disease detection and prediction, it is imperative that high-quality datasets be made available for the models to train on. This work recognizes the dearth of training data (both in terms of quality and quantity of images) for using such networks for the detection of Alzheimer’s disease. It is proposed to employ a Wasserstein Generative Adversarial Network (WGAN) for generating synthetic images for augmentation of an existing Alzheimer brain image dataset. It is shown that the proposed approach is indeed successful in generating high-quality images for inclusion in the Alzheimer image dataset potentially making the dataset more suited for training high-end models
    corecore