45 research outputs found

    Amenability of groups and GG-sets

    Full text link
    This text surveys classical and recent results in the field of amenability of groups, from a combinatorial standpoint. It has served as the support of courses at the University of G\"ottingen and the \'Ecole Normale Sup\'erieure. The goals of the text are (1) to be as self-contained as possible, so as to serve as a good introduction for newcomers to the field; (2) to stress the use of combinatorial tools, in collaboration with functional analysis, probability etc., with discrete groups in focus; (3) to consider from the beginning the more general notion of amenable actions; (4) to describe recent classes of examples, and in particular groups acting on Cantor sets and topological full groups

    MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer

    Get PDF
    We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3′-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility

    Identification of Novel Functional Inhibitors of Acid Sphingomyelinase

    Get PDF
    We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Rapid Development of a Gamma Interferon-Secreting Glycolipid/CD1d-Specific Vα14(+) NK1.1(−) T-Cell Subset after Bacterial Infection

    No full text
    The phenotypic and functional changes of glycolipid presented by CD1d(glycolipid/CD1d) specific Vα14(+) T cells in the liver of mice at early stages of bacterial infection were investigated. After Listeria monocytogenes infection or interleukin-12 (IL-12) treatment, α-galactosylceramide/CD1d tetramer-reactive (α-GalCer/CD1d(+)) T cells coexpressing natural killer (NK) 1.1 marker became undetectable and, concomitantly, cells lacking NK1.1 emerged in both euthymic and thymectomized animals. Depletion of the NK1.1(+) subpopulation prevented the emergence of α-GalCer/CD1d(+) NK1.1(−) T cells. Before infection, NK1.1(+), rather than NK1.1(−), α-GalCer/CD1d(+) T cells coexpressing CD4 were responsible for IL-4 production, whereas gamma interferon (IFN-γ) was produced by cells regardless of NK1.1 or CD4 expression. After infection, IL-4-secreting cells became undetectable among α-GalCer/CD1d(+) T cells, but considerable numbers of IFN-γ-secreting cells were found among NK1.1(−), but not NK1.1(+), cells lacking CD4. Thus, NK1.1 surface expression and functional activities of Vα14(+) T cells underwent dramatic changes at early stages of listeriosis, and these alterations progressed in a thymus-independent manner. In mutant mice lacking all α-GalCer/CD1d(+) T cells listeriosis was ameliorated, suggesting that the subtle contribution of the NK1.1(−) T-cell subset to antibacterial protection is covered by more profound detrimental effects of the NK1.1(+) T-cell subset

    Dissociated expression of natural killer 1.1 and T-cell receptor by invariant natural killer T cells after interleukin-12 receptor and T-cell receptor signalling

    No full text
    Invariant (i) natural killer T (NKT) cells become undetectable after stimulation with α-galactosylceramide (α-GalCer) or interleukin (IL)-12. Although down-modulation of surface T-cell receptor (TCR)/NKR-P1C (NK1.1) expression has been shown convincingly after stimulation with α-GalCer, it is unclear whether this also holds true for IL-12 stimulation. To determine whether failure to detect iNKT cells after IL-12 stimulation is caused by dissociation/internalization of TCR and/or NKR-P1C, or by block of de novo synthesis of these molecules, and to examine the role of IL-12 in the disappearance of iNKT cells after stimulation with α-GalCer, surface (s)/cytoplasmic (c) protein expression, as well as messenger RNA (mRNA) expression of TCR/NKR-P1C by iNKT cells after stimulation with α-GalCer or IL-12, and the influence of IL-12 neutralization on the down-modulation of sTCR/sNKR-P1C expression by iNKT cells after stimulation with α-GalCer were examined. The s/cTCR+s/cNKR-P1C+ iNKT cells became undetectable after in vivo administration of α-GalCer, which was partially prevented by IL-12 neutralization. Whereas s/cNKR-P1C+ iNKT cells became undetectable after in vivo administration of IL-12, s/cTCR+ iNKT cells were only marginally affected. mRNA expression of TCR/NKR-P1C remained unaffected by α-GalCer or IL-12 treatment, despite the down-modulation of cTCR and/or cNKR-P1C protein expression. By contrast, cTCR+cNKR-P1C+ sTCR− sNKR-P1C− iNKT cells and cNKR-P1C+ sNKR-P1C− iNKT cells were detectable after in vitro stimulation with α-GalCer and IL-12, respectively. Our results indicate that TCR and NKR-P1C expression by iNKT cells is differentially regulated by signalling through TCR and IL-12R. They also suggest that IL-12 participates, in part, in the disappearance of iNKT cells after stimulation with α-GalCer by down-modulating not only sNKR-P1C, but also sTCR
    corecore