154 research outputs found

    Feeding IC 342: The nuclear spiral of a starburst galaxy

    Get PDF
    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342

    Is a local bar a good place to find a companion? The near infrared morphology of Maffei 2

    Get PDF
    Maffei 2 is one of the closest large spiral galaxies lying just beyond the Local Group. It would probably be one of the most heavily studied galaxies in the sky were it not for the approximately 5 magnitudes of visual extinction resulting from its position behind the Galactic plane. It is the site of a burst of nuclear star formation indicated by strong infrared and radii continuum emission. Interferometric maps of CO-12 and CO-13 emission indicate that star formation is associated with a barlike structure consisting of arms of molecular gas that extend from within approximately 50 pc of the dynamical center out to a radius of at least 500 pc. HI maps have shown the galaxy to have an angular extent of approximately 15 feet and a neutral gas mass typical of a large spiral galaxy

    UV Imaging Polarimetry of the peculiar Seyfert 2 galaxy Mrk 477

    Get PDF
    We present the results of UV imaging polarimetry of the Seyfert 2 galaxy Mrk 477 taken by the Faint Object Camera onboard the Hubble Space Telescope (HST). From a previous HST UV image (lambda ~ 2180A), Mrk 477 has been known to have a pointlike bright UV hotspot in the central region, peculiar among nearby Seyfert 2 galaxies. There are also claims of UV/optical variability, unusual for a Seyfert 2 galaxy. Our data show that there is an off-nuclear scattering region ~ 0."6 (~ 500 pc) NE from the hotspot. The data, after the subtraction of the instrumental effect due to this bright hotspot region, might indicate that the scattered light is also detected in the central 0."2 radius region and is extended to a very wide angle. The hotspot location is consistent with the symmetry center of the PA pattern, which represents the location of the hidden nucleus, but our data do not provide a strong upper limit to the distance between the symmetry center and the hotspot. We have obtained high spatial resolution color map of the continuum which shows that the nuclear spiral arm of 0."4 scale (~ 300pc) is significantly bluer than the off-nuclear mirror and the hotspot region. The nature of the hotspot is briefly discussed.Comment: To appear in Ap

    UV Imaging Polarimetry of the Seyfert 2 Galaxy Mrk 3

    Get PDF
    We present UV imaging polarimetry data of the Seyfert 2 galaxy Mrk 3 taken by the Hubble Space Telescope. The polarized flux is found to be extended to ~1 kpc from the nucleus, and the position angles of polarization are centrosymmetric, confirming that the polarization is caused by scattering. We determine the location of the hidden nucleus as the center of this centrosymmetric pattern. From the polarization images taken in two broad bands, we have obtained the color distribution of the polarized flux. Some regions have blue polarized flux, consistent with optically-thin dust scattering, but some bright knots have a color similar to that of Seyfert 1 nucleus. Also, the recent Chandra X-ray observation suggests that the ratio of scattered UV flux to scattered X-ray flux is rather similar to the intrinsic UV/X-ray ratio in a Seyfert 1 nucleus, if the observed extended X-ray continuum is scattered light. While the scattered X-ray would be essentially from electron scattering, the UV slope and UV/X-ray ratio both being similar to Seyfert 1's would lead to two possibilities as to the nature of the UV scatterers. One is that the UV may also be scattered by electrons, in which case the scattering gas is somehow dust-free. The other is that the UV is scattered by dust grains, but the wavelength-independent UV scattering with low efficiency indicated by the UV slope and UV/X-ray ratio would suggest that the grains reside in UV-opaque clouds, or the dust might be mainly composed of large grains and lacks small-grain population.Comment: 15 pages, 8 figures (plus 2 color versions of grayscale figures), To appear in ApJ; minor corrections for the proofs of the manuscrip

    Nuclear Bar Catalyzed Star Formation: 13^CO, C18^O and Molecular Gas Properties in the Nucleus of Maffei 2

    Get PDF
    (Abridged) We present resolution maps of CO, its isotopologues, and HCN from in the center of Maffei 2. The J=1-0 rotational lines of 12^CO, 13^CO, C18^O and HCN, and the J=2-1 lines of 13^CO and C18^O were observed with the OVRO and BIMA arrays. The 2-1/1-0 line ratios of the isotopologues constrain the bulk of the molecular gas to originate in low excitation, subthermal gas. From LVG modeling, we infer that the central GMCs have n(H_2) ~10^2.75 cm^-3 and T_k ~ 30 K. Continuum emission at 3.4 mm, 2.7 mm and 1.4 mm was mapped to determine the distribution and amount of HII regions and dust. Column densities derived from C18^O and 1.4 mm dust continuum fluxes indicate the CO conversion factor in the center of Maffei 2 is lower than Galactic by factors of ~2-4. Gas morphology and the clear ``parallelogram'' in the Position-Velocity diagram shows that molecular gas orbits within the potential of a nuclear (~220 pc) bar. The nuclear bar is distinct from the bar that governs the large scale morphology of Maffei 2. Giant molecular clouds in the nucleus are nonspherical and have large linewidths. Dense gas and star formation are concentrated at the sites of the x_1-x_2 orbit intersections of the nuclear bar, suggesting that the starburst is dynamically triggered.Comment: 50 pages, 14 figures, accepted for publication in Ap

    UV Spectropolarimetry of Narrow-line Radio Galaxies

    Get PDF
    We present the results of UV spectropolarimetry (2000 - 3000A) and far-UV spectroscopy (1500 - 2000A) of two low-redshift narrow-line radio galaxies (NLRGs) taken with the Faint Object Spectrograph onboard the Hubble Space Telescope (HST). Spectropolarimetry of several NLRGs has shown that, by the presence of broad permitted lines in polarized flux spectrum, they have hidden quasars seen through scattered light. Imaging polarimetry has shown that NLRGs including our targets often have large scattering regions of a few kpc to >~10 kpc scale. This has posed a problem about the nature of the scatterers in these radio galaxies. Their polarized continuum has the spectral index similar to or no bluer than that of quasars, which favors electrons as the dominant scattering particles. The large scattering region size, however, favors dust scattering, because of its higher scattering efficiency compared to electrons. In this paper, we investigate the polarized flux spectrum over a wide wavelength range, combining our UV data with previous optical/infrared polarimetry data. We infer that the scattering would be often caused by opaque dust clouds in the NLRGs and this would be a part of the reason for the apparently grey scattering. In the high-redshift radio galaxies, these opaque clouds could be the proto-galactic subunits inferred to be seen in the HST images. However, we still cannot rule out the possibility of electron scattering, which could imply the existence of a large gas mass surrounding these radio galaxies.Comment: 25 pages, 21 figures. To appear in Ap

    Near and Mid-IR Photometry of the Pleiades, and a New List of Substellar Candidate Members

    Get PDF
    We make use of new near and mid-IR photometry of the Pleiades cluster in order to help identify proposed cluster members. We also use the new photometry with previously published photometry to define the single-star main sequence locus at the age of the Pleiades in a variety of color-magnitude planes. The new near and mid-IR photometry extend effectively two magnitudes deeper than the 2MASS All-Sky Point Source catalog, and hence allow us to select a new set of candidate very low mass and sub-stellar mass members of the Pleiades in the central square degree of the cluster. We identify 42 new candidate members fainter than Ks =14 (corresponding to 0.1 Mo). These candidate members should eventually allow a better estimate of the cluster mass function to be made down to of order 0.04 solar masses. We also use new IRAC data, in particular the images obtained at 8 um, in order to comment briefly on interstellar dust in and near the Pleiades. We confirm, as expected, that -- with one exception -- a sample of low mass stars recently identified as having 24 um excesses due to debris disks do not have significant excesses at IRAC wavelengths. However, evidence is also presented that several of the Pleiades high mass stars are found to be impacting with local condensations of the molecular cloud that is passing through the Pleiades at the current epoch.Comment: Accepted to ApJS; data tables and embedded-figure version available at http://spider.ipac.caltech.edu/staff/stauffer/pleiades07

    Protostars in the Elephant Trunk Nebula

    Get PDF
    The optically-dark globule IC 1396A is revealed using Spitzer images at 3.6, 4.5, 5.8, 8, and 24 microns to be infrared-bright and to contain a set of previously unknown protostars. The mid-infrared colors of the 24 microns detected sources indicate several very young (Class I or 0) protostars and a dozen Class II stars. Three of the new sources (IC 1396A: gamma, delta, and epsilon) emit over 90% of their bolometric luminosities at wavelengths greater than 3 microns, and they are located within ~0.02 pc of the ionization front at the edge of the globule. Many of the sources have spectra that are still rising at 24 microns. The two previously-known young stars LkHa 349 a and c are both detected, with component c harboring a massive disk and component a being bare. Of order 5% of the mass of material in the globule is presently in the form of protostars in the 10^5 to 10^6 yr age range. This high star formation rate was likely triggered by radiation from a nearby O star.Comment: Spitzer first ApJS special issue (in press

    First Results from the ISO‐IRAS Faint Galaxy Survey

    Get PDF
    We present the first results from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12 ÎŒm ISOCAM and 90 ÎŒm ISOPHOT observations. As of 1997 October, over 500 sources have been observed, with an ISOCAM detection rate over 80%, covering over 1.25 deg^2 of sky to an 11.5 ÎŒm point-source completeness limit of approximately 1.0 mJy (corresponding to a ~10 σ detection sensitivity). Observations are presented for nine sources detected by ISOPHOT and ISOCAM early in the survey for which we have ground-based G- and I-band images and optical spectroscopy. The ground-based data confirm that the IIFGS strategy efficiently detects moderate-redshift (z = 0.11-0.38 for this small sample) strong emission line galaxies with L_(60 ÎŒm) ≳ 10^(11) L_☉; one of our sample has L_(60 ÎŒm) > 10^(12) L_☉ (H_0 = 75 km s^(-1) Mpc^(-1), Ω = 1). The infrared-optical spectral energy distributions are comparable to those of nearby luminous infrared galaxies, which span the range from pure starburst (e.g., Arp 220) to infrared QSO (Mrk 231). Two of the systems show signs of strong interaction, and four show active galactic nucleus (AGN)-like excitation; one of the AGNs, F15390+6038, which shows a high excitation Seyfert 2 spectrum, has an unusually warm far- to mid-infrared color and may be an obscured QSO. The IIFGS sample is one of the largest and deepest samples of infrared-luminous galaxies available, promising to be a rich sample for studying infrared-luminous galaxies up to z ~ 1 and for understanding the evolution of infrared galaxies and the star formation rate in the universe

    The ISO-IRAS Faint Galaxy Survey

    Get PDF
    The ISO-IRAS Faint Galaxy Survey will obtain comprehensive space- and ground-based observations of the most distant and luminous galaxies in the IRAS Faint Source Survey. ISO observations are obtained by filling short gaps in the ISO observing schedule with pairs of 11.5ÎŒm ISOCAM and 90ÎŒm ISOPHOT observations. As of the October 1997 date of this Conference, over 500 sources have been observed by ISO with an ISOCAM detection rate exceeding 803. Ground-based spectrophotometry confirms that the IIFGS efficiently detects moderateredshift, strong emission line Luminous Infrared Galaxies. Spectrophotometry is currently available for 67 galaxies with 0.07 < z < 0. 7 and L_(fir) > 10^(11) L_☉. The galaxies are comparable to nearby LIGs, showing HII/Liner excitation; about 10% exhibit strong AGN characteristics. As a part of this survey we will cover over 1.25 square degrees of sky to an 11.5ÎŒm limit of approximately l.0mJy, allowing a sensitive estimate of the 11.5ÎŒm logN-logS Relationship. Preliminary ll.5ÎŒm source counts suggest substantial evolution in the mid-infrared galaxy population
    • 

    corecore