4,543 research outputs found

    Automating Carotid Intima-Media Thickness Video Interpretation with Convolutional Neural Networks

    Full text link
    Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three end-diastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia interface in each ROI to measure CIMT. These operations are tedious, laborious, and time consuming, a serious limitation that hinders the widespread utilization of CIMT in clinical practice. To overcome this limitation, this paper presents a new system to automate CIMT video interpretation. Our extensive experiments demonstrate that the suggested system significantly outperforms the state-of-the-art methods. The superior performance is attributable to our unified framework based on convolutional neural networks (CNNs) coupled with our informative image representation and effective post-processing of the CNN outputs, which are uniquely designed for each of the above three operations.Comment: J. Y. Shin, N. Tajbakhsh, R. T. Hurst, C. B. Kendall, and J. Liang. Automating carotid intima-media thickness video interpretation with convolutional neural networks. CVPR 2016, pp 2526-2535; N. Tajbakhsh, J. Y. Shin, R. T. Hurst, C. B. Kendall, and J. Liang. Automatic interpretation of CIMT videos using convolutional neural networks. Deep Learning for Medical Image Analysis, Academic Press, 201

    MST Resistive Wall Tearing Mode Simulations

    Full text link
    The Madison Symmetric Torus (MST) is a toroidal device that, when operated as a tokamak, is resistant to disruptions. Unlike most tokamaks, the MST plasma is surrounded by a close fitting highly conducting wall, with a resistive wall penetration time two orders of magnitude longer than in JET or DIII-D, and three times longer than in ITER. The MST can operate with edge q_a < 2, unlike standard tokamaks. Simulations presented here indicate that the MST is unstable to resistive wall tearing modes (RWTMs) and resistive wall modes (RWMs). They could in principle cause disruptions, but the predicted thermal quench time is much longer than the experimental pulse time. If the MST thermal quench time were comparable to measurements in JET and DIII-D, theory and simulations predict that disruptions would have been observed in MST. This is consistent with the modeling herein, predicting that disruptions are caused by RWTMs and RWMs. In the low q_a regime of MST, the RWTM asymptotically satisfies the RWM dispersion relation. The transition from RWTM to RWM occurs smoothly at q_a = m/n, where m,n are poloidal and toroidal mode numbers

    Boron Nitride Nanotubes-Reinforced Glass Composites

    Get PDF
    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with ~4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time

    Extreme value statistics and return intervals in long-range correlated uniform deviates

    Full text link
    We study extremal statistics and return intervals in stationary long-range correlated sequences for which the underlying probability density function is bounded and uniform. The extremal statistics we consider e.g., maximum relative to minimum are such that the reference point from which the maximum is measured is itself a random quantity. We analytically calculate the limiting distributions for independent and identically distributed random variables, and use these as a reference point for correlated cases. The distributions are different from that of the maximum itself i.e., a Weibull distribution, reflecting the fact that the distribution of the reference point either dominates over or convolves with the distribution of the maximum. The functional form of the limiting distributions is unaffected by correlations, although the convergence is slower. We show that our findings can be directly generalized to a wide class of stochastic processes. We also analyze return interval distributions, and compare them to recent conjectures of their functional form

    Stochastic Opinion Formation in Scale-Free Networks

    Get PDF
    The dynamics of opinion formation in large groups of people is a complex non-linear phenomenon whose investigation is just at the beginning. Both collective behaviour and personal view play an important role in this mechanism. In the present work we mimic the dynamics of opinion formation of a group of agents, represented by two state ±1\pm 1, as a stochastic response of each of them to the opinion of his/her neighbours in the social network and to feedback from the average opinion of the whole. In the light of recent studies, a scale-free Barab\'asi-Albert network has been selected to simulate the topology of the interactions. A turbulent-like dynamics, characterized by an intermittent behaviour, is observed for a certain range of the model parameters. The problem of uncertainty in decision taking is also addressed both from a topological point of view, using random and targeted removal of agents from the network, and by implementing a three state model, where the third state, zero, is related to the information available to each agent. Finally, the results of the model are tested against the best known network of social interactions: the stock market. A time series of daily closures of the Dow Jones index has been used as an indicator of the possible applicability of our model in the financial context. Good qualitative agreement is found.Comment: 24 pages and 13 figures, Physical Review E, in pres

    Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells

    Get PDF
    A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs)

    Fractional derivatives of random walks: Time series with long-time memory

    Full text link
    We review statistical properties of models generated by the application of a (positive and negative order) fractional derivative operator to a standard random walk and show that the resulting stochastic walks display slowly-decaying autocorrelation functions. The relation between these correlated walks and the well-known fractionally integrated autoregressive (FIGARCH) models, commonly used in econometric studies, is discussed. The application of correlated random walks to simulate empirical financial times series is considered and compared with the predictions from FIGARCH and the simpler FIARCH processes. A comparison with empirical data is performed.Comment: 10 pages, 14 figure

    Late-Time Optical and UV Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8 yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad 5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II] 7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A, [S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1} indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa
    corecore