5,097 research outputs found

    RF multicoupler design techniques to minimize problems of corona, multipaction, and stability

    Get PDF
    A mathematical expression was derived describing multipacting and corona effects in a coaxial cavity. Both mechanical and electrical design techniques were investigated to minimize the susceptibility of coaxial cavity to corona and multipacting-type breakdown. To assist in the design of a multicoupler free from corona and multipactor breakdown, a flow chart obtained from the derived mathematical expression is included

    A pertubative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates

    Full text link
    Recent experimental advances in scanning tunneling microscopy make the measurement of the conductance spectra of isolated and magnetically coupled atoms on nonmagnetic substrates possible. Notably these spectra are characterized by a competition between the Kondo effect and spin-flip inelastic electron tunneling. In particular they include Kondo resonances and a logarithmic enhancement of the conductance at voltages corresponding to magnetic excitations, two features that cannot be captured by second order perturbation theory in the electron-spin coupling. We have now derived a third order analytic expression for the electron-spin self-energy, which can be readily used in combination with the non-equilibrium Green's function scheme for electron transport at finite bias. We demonstrate that our method is capable of quantitative description the competition between Kondo resonances and spin-flip inelastic electron tunneling at a computational cost significantly lower than that of other approaches. The examples of Co and Fe on CuN are discussed in detail

    On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397

    Full text link
    We have examined the radial distribution of white dwarfs over a single HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations, such as in a globular cluster, stellar velocity dispersion, and hence radial distribution, is directly dependent on stellar masses. The progenitors of very young cluster white dwarfs had a mass of ~0.8 solar masses, while the white dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white dwarfs to have a concentrated radial distribution (like that of their progenitors) that becomes more extended over several relaxation times to mimic that of ~0.5 solar mass main-sequence stars. However, we observe young white dwarfs to have a significantly extended radial distribution compared to both the most massive main sequence stars in the cluster and also to old white dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in the MNRAS Letter

    X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE

    Full text link
    We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted by ApJ

    LOTIS Search for Early Time Optical Afterglows: GRB 971227

    Get PDF
    We report on the very early time search for an optical afterglow from GRB 971227 with the Livermore Optical Transient Imaging System (LOTIS). LOTIS began imaging the `Original' BATSE error box of GRB 971227 approximately 14 s after the onset of gamma-ray emission. Continuous monitoring of the position throughout the evening yielded a total of 499 images (10 s integration). Analysis of these images revealed no steady optical afterglow brighter than R=12.3 +- 0.2 in any single image. Coaddition of different combinations of the LOTIS images also failed to uncover transient optical emission. In particular, assuming a constant early time flux, no optical afterglow brighter than R=14.2 +- 0.2 was present within the first 1200 s and no optical afterglow brighter than R=15.0 +- 0.2 was present in the first 6.0 h. Follow up observations by other groups revealed a likely X-ray afterglow and a possible optical afterglow. Although subsequent deeper observations could not confirm a fading source, we show that these transients are not inconsistent with our present knowledge of the characteristics of GRB afterglows. We also demonstrate that with the upgraded thermoelectrically cooled CCDs, LOTIS is capable of either detecting very early time optical afterglow or placing stringent constraints on the relationship between the gamma-ray emission and the longer wavelength afterglow in relativistic blast wave models.Comment: 17 pages, 3 eps figures, revisions based on reviewers comment

    Slowly cycling Rho kinase-dependent actomyosin cross-bridge slippage explains intrinsic high compliance of detrusor smooth muscle

    Get PDF
    Biological soft tissues are viscoelastic because they display timeindependent pseudoelasticity and time-dependent viscosity. However, there is evidence that the bladder may also display plasticity, defined as an increase in strain that is unrecoverable unless work is done by the muscle. In the present study, an electronic lever was used to induce controlled changes in stress and strain to determine whether rabbit detrusor smooth muscle (rDSM) is best described as viscoelastic or viscoelastic plastic. Using sequential ramp loading and unloading cycles, stress-strain and stiffness-stress analyses revealed that rDSM displayed reversible viscoelasticity, and that the viscous component was responsible for establishing a high stiffness at low stresses that increased only modestly with increasing stress compared with the large increase produced when the viscosity was absent and only pseudoelasticity governed tissue behavior. The study also revealed that rDSM underwent softening correlating with plastic deformation and creep that was reversed slowly when tissues were incubated in a Ca2+ -containing solution. Together, the data support a model of DSM as a viscoelastic-plastic material, with the plasticity resulting from motor protein activation. This model explains the mechanism of intrinsic bladder compliance as slipping cross bridges, predicts that wall tension is dependent not only on vesicle pressure and radius but also on actomyosin cross-bridge activity, and identifies a novel molecular target for compliance regulation, both physiologically and therapeutically

    MODIS-HIRIS ground data systems commonality report

    Get PDF
    The High Resolution Imaging Spectrometer (HIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) Data Systems Working Group was formed in September 1988 with representatives of the MODIS Data System Study Group and the HIRIS Project Data System Design Group to collaborate in the development of requirements on the EosDIS necessary to meet the science objectives of the two facility instruments. A major objective was to identify and promote commonality between the HIRIS and MODIS data systems, especially from the science users' point of view. A goal was to provide a base set of joint requirements and specifications which could easily be expanded to a Phase-B representation of the needs of the science users of all EOS instruments. This document describes the points of commonality and difference between the Level-II Requirements, Operations Concepts, and Systems Specifications for the ground data systems for the MODIS and HIRIS instruments at their present state of development

    Modest-2: A Summary

    Get PDF
    This is a summary paper of MODEST-2, a workshop held at the Astronomical Institute ``Anton Pannekoek'' in Amsterdam, 16-17 December 2002. MODEST is a loose collaboration of people interested in MOdelling DEnse STellar systems, particularly those interested in modelling these systems using all the available physics (stellar dynamics, stellar evolution, hydrodynamics and the interplay between the three) by defining interfaces between different codes. In this paper, we summarize 1) the main advances in this endeavour since MODEST-1; 2) the main science goals which can be and should be addressed by these types of simulations; and 3) the most pressing theoretical and modelling advances that we identified.Comment: Accepted by New Astronom

    Deep HST Imaging in NGC 6397: Stellar Dynamics

    Full text link
    Multi-epoch observations with ACS on HST provide a unique and comprehensive probe of stellar dynamics within NGC 6397. We are able to confront analytic models of the globular cluster with the observed stellar proper motions. The measured proper motions probe well along the main sequence from 0.8 to below 0.1 M⊙_\odot as well as white dwarfs younger than one gigayear. The observed field lies just beyond the half-light radius where standard models of globular cluster dynamics (e.g. based on a lowered Maxwellian phase-space distribution) make very robust predictions for the stellar proper motions as a function of mass. The observed proper motions show no evidence for anisotropy in the velocity distribution; furthermore, the observations agree in detail with a straightforward model of the stellar distribution function. We do not find any evidence that the young white dwarfs have received a natal kick in contradiction with earlier results. Using the observed proper motions of the main-sequence stars, we obtain a kinematic estimate of the distance to NGC 6397 of 2.2−0.7+0.52.2^{+0.5}_{-0.7} kpc and a mass of the cluster of 1.1±0.1×105M⊙1.1 \pm 0.1 \times 10^5 \mathrm{M}_\odot at the photometric distance of 2.53 kpc. One of the main-sequence stars appears to travel on a trajectory that will escape the cluster, yielding an estimate of the evaporation timescale, over which the number of stars in the cluster decreases by a factor of e, of about 3 Gyr. The proper motions of the youngest white dwarfs appear to resemble those of the most massive main-sequence stars, providing the first direct constraint on the relaxation time of the stars in a globular cluster of greater than or about 0.7 Gyr.Comment: 25 pages, 20 figures, accepted for publication in Astrophysical Journa
    • …
    corecore