3,397 research outputs found
Nature of fault planes in solid neutron star matter
The properties of tectonic earthquake sources are compared with those deduced
here for fault planes in solid neutron-star matter. The conclusion that
neutron-star matter cannot exhibit brittle fracture at any temperature or
magnetic field is significant for current theories of pulsar glitches, and of
the anomalous X-ray pulsars and soft-gamma repeaters.Comment: 5 AAS LaTeX pages 1 eps figur
The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs
Between 1996 July and 2002 April, one or more spacecraft of the
interplanetary network detected 787 cosmic gamma-ray bursts that were also
detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera
experiments aboard the BeppoSAX spacecraft. During this period, the network
consisted of up to six spacecraft, and using triangulation, the localizations
of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal
Supplement Serie
Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs
Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene
Discovery of a luminous white dwarf in a young star cluster in the Large Magellanic Cloud
We have identified a candidate 1-2 x 10^5 year old luminous white dwarf in
NGC 1818, a young star cluster in the Large Magellanic Cloud. This discovery
strongly constrains the boundary mass M_c at which stars stop forming neutron
stars and start forming white dwarfs, to M_c > 7.6 Msun.Comment: 4 pages, 2 figures, greyscale image available by ftp from
[email protected]. ApJLetters, accepted 17 March 199
Testing Lorentz Invariance with GRB021206
Since the discovery of the cosmological origin of GRBs there has been growing
interest in using these transient events to probe the quantum gravity energy
scale in the range 10^16--10^19 GeV, up to the Planck mass scale. This energy
scale can manifest itself through a measurable modification in the
electromagnetic radiation dispersion relation for high energy photons
originating from cosmological distances. We have used data from the gamma-ray
burst (GRB) of 6 December 2002 (GRB021206) to place an upper bound on the
energy dispersion of the speed of light. The limit on the first-order quantum
gravity effects derived from this single GRB indicate that the energy scale is
in excess of 1.8x10^17 GeV. We discuss a program to further constrain the
energy scale by systematically studying such GRBs.Comment: 10 pages, 3 figures, accepted for publication in ApJ
Three precise gamma-ray burst source locations
The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made
Detection of a fast, intense and unusual gamma ray transient
An unusual transient pulse of approximately 50 keV was detected by the gamma-ray burst sensor network using nine space probes and satellites. Its characteristics are unlike those of the known variety of gamma-ray bursts and therefore suggest that it was formed either by a completely different origin species or in a very different manner. It is identified with the LMC supernova remnant N49
The Giant Flare of December 27, 2004 from SGR 1806-20
The giant flare of December 27, 2004 from SGR 1806-20 represents one of the
most extraordinary events captured in over three decades of monitoring the
gamma-ray sky. One measure of the intensity of the main peak is its effect on
X- and gamma-ray instruments. RHESSI, an instrument designed to study the
brightest solar flares, was completely saturated for ~0.5 s following the start
of the main peak. A fortuitous alignment of SGR 1806-20 near the Sun at the
time of the giant flare, however, allowed RHESSI a unique view of the giant
flare event, including the precursor, the main peak decay, and the pulsed tail.
Since RHESSI was saturated during the main peak, we augment these observations
with Wind and RHESSI particle detector data in order to reconstruct the main
peak as well. Here we present detailed spectral analysis and evolution of the
giant flare. We report the novel detection of a relatively soft fast peak just
milliseconds before the main peak, whose timescale and sizescale indicate a
magnetospheric origin. We present the novel detection of emission extending up
to 17 MeV immediately following the main peak, perhaps revealing a
highly-extended corona driven by the hyper-Eddington luminosities. The spectral
evolution and pulse evolution during the tail are presented, demonstrating
significant magnetospheric twist and evolution during this phase. Blackbody
radii are derived for every stage of the flare, which show remarkable agreement
despite the range of luminosities and temperatures covered. Finally, we place
significant upper limits on afterglow emission in the hundreds of seconds
following the giant flare.Comment: 32 pages, 14 figures, submitted to Ap
Statistical properties of SGR 1900+14 bursts
We study the statistics of soft gamma repeater (SGR) bursts, using a data
base of 187 events detected with BATSE and 837 events detected with RXTE PCA,
all from SGR 1900+14 during its 1998-1999 active phase. We find that the
fluence or energy distribution of bursts is consistent with a power law of
index 1.66, over 4 orders of magnitude. This scale-free distribution resembles
the Gutenberg-Richter Law for earthquakes, and gives evidence for
self-organized criticality in SGRs. The distribution of time intervals between
successive bursts from SGR 1900+14 is consistent with a log-normal
distribution. There is no correlation between burst intensity and the waiting
times till the next burst, but there is some evidence for a correlation between
burst intensity and the time elapsed since the previous burst. We also find a
correlation between the duration and the energy of the bursts, but with
significant scatter. In all these statistical properties, SGR bursts resemble
earthquakes and solar flares more closely than they resemble any known
accretion-powered or nuclear-powered phenomena. Thus our analysis lends support
to the hypothesis that the energy source for SGR bursts is internal to the
neutron star, and plausibly magnetic.Comment: 11 pages, 4 figures, accepted for publication in ApJ
Dynamical heterogeneities in a supercooled Lennard-Jones liquid
We present the results of a large scale molecular dynamics computer
simulation study in which we investigate whether a supercooled Lennard-Jones
liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian
parameter for the self part of the van Hove correlation function and use it to
identify ``mobile'' particles. We find that these particles form clusters whose
size grows with decreasing temperature. We also find that the relaxation time
of the mobile particles is significantly shorter than that of the bulk, and
that this difference increases with decreasing temperature.Comment: 8 pages of RevTex, 4 ps figure
- …