60 research outputs found

    Wrapping an adhesive sphere with a sheet

    Full text link
    We study the adhesion of an elastic sheet on a rigid spherical substrate. Gauss'Theorema Egregium shows that this operation necessarily generates metric distortions (i.e. stretching) as well as bending. As a result, a large variety of contact patterns ranging from simple disks to complex branched shapes are observed as a function of both geometrical and material properties. We describe these different morphologies as a function of two non-dimensional parameters comparing respectively bending and stretching energies to adhesion. A complete configuration diagram is finally proposed

    On the turbulent α\alpha-disks and the intermittent activity in AGN

    Full text link
    We consider effects of the MHD turbulence on the viscosity during the evolution of the thermal-viscous ionization instability in the standard α\alpha-accretion disks. We consider the possibility that the accretion onto a supermassive black hole proceeds through an outer standard accretion disk and inner, radiatively inefficient and advection dominated flow. In this scenario we follow the time evolution of the accretion disk in which the viscosity parameter α\alpha is constant throughout the whole instability cycle, as implied by the strength of MHD turbulence. We conclude that the hydrogen ionization instability is a promising mechanism to explain the intermittent activity in AGN.Comment: 13 pages, 9 figures; ApJ accepte

    Interpreting the Variability of Double-Peaked Emission Lines in Active Galactic Nuclei with Stochastically Perturbed Accretion Disk Models

    Full text link
    In an effort to explain the short-timescale variability of the broad, double-peaked profiles of some active galactic nuclei, we constructed stochastically perturbed accretion disk models and calculated H alpha line profile series as the bright spots rotate, shear and decay. We determined the dependence of the properties of the line profile variability on the spot properties. We compared the variability of the line profile from the models to the observed variability of the H alpha line of Arp 102B and 3C 390.3. We find that spots need to be concentrated in the outer parts of the line emitting region to reproduce the observed variability properties for Arp 102B. This rules out spot production by star/disk collisions and favors a scenario where the radius of marginal self-gravity is within the line emitting region, creating a sharp increase in the radial spot distribution in the outer parts. In the case of 3C 390.3, all the families of models that we tested can reproduce the observed variability for a suitable choice of model parameters.Comment: 27 pages, 8 figures, accepted for publication in Ap

    Mira's wind explored in scattering infrared CO lines

    Get PDF
    We have observed the intermediate regions of the circumstellar envelope of Mira (o Ceti) in photospheric light scattered by three vibration-rotation transitions of the fundamental band of CO, from low-excited rotational levels of the ground vibrational state, at an angular distance of beta = 2"-7" away from the star. The data were obtained with the Phoenix spectrometer mounted on the 4 m Mayall telescope at Kitt Peak. The spatial resolution is approximately 0.5" and seeing limited. Our observations provide absolute fluxes, leading to an independent new estimate of the mass-loss rate of approximately 3e-7 Msun/yr, as derived from a simple analytic wind model. We find that the scattered intensity from the wind of Mira for 2" < beta < 7" decreases as beta^-3, which suggests a time constant mass-loss rate, when averaged over 100 years, over the past 1200 years.Comment: accepted for publication in the Astrophysical Journa

    Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    Get PDF
    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.Comment: 90 pages, 19 figures (some with parts "a", "b", etc.); to be published in the Astrophysical Journal Supplement

    Observations of H3+ in the Diffuse Interstellar Medium

    Get PDF
    Surprisingly large column densities of H3+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H3+ column densities imply unreasonably long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H3+ must be increased by one to two orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller value of the H3+ dissociative recombination rate constant than implied by laboratory experiments.Comment: To be published in Astrophysical Journal, March 200

    Radiation pressure instability driven variability in the accreting black holes

    Full text link
    The time dependent evolution of the accretion disk around black hole is computed. The classical description of the α\alpha-viscosity is adopted so the evolution is driven by the instability operating in the innermost radiation-pressure dominated part of the accretion disk. We assume that the optically thick disk always extends down to the marginally stable orbit so it is never evacuated completely. We include the effect of the advection, coronal dissipation and vertical outflow. We show that the presence of the corona and/or the outflow reduce the amplitude of the outburst. If only about half of the energy is dissipated in the disk (with the other half dissipated in the corona and carried away by the outflow) the outburst amplitude and duration are consistent with observations of the microquasar GRS 1915+105. Viscous evolution explains in a natural way the lack of direct transitions from the state C to the state B in color-color diagram of this source. Further reduction of the fraction of energy dissipated in the optically thick disk switches off the outbursts which may explain why they are not seen in all high accretion rate sources being in the Very High State.Comment: 31 pages, 14 figures; accepted to Ap

    The Evolution of Black Hole Mass and Spin in Active Galactic Nuclei

    Full text link
    We argue that supermassive black hole growth in AGN occurs via sequences of randomly--oriented accretion discs with angular momentum limited by self--gravity. These stably co-- or counter--align with the black hole spin with almost equal frequency. Accretion from these discs very rapidly adjusts the hole's spin parameter to average values aˉ∌0.1−0.3\bar a \sim 0.1-0.3 (the precise range depending slightly on the disc vertical viscosity coefficient α2\alpha_2) from any initial conditions, but with significant fluctuations (Δa∌±0.2\Delta a\sim \pm 0.2) about these. We conclude (a) AGN black holes should on average spin moderately, with the mean value aˉ\bar a decreasing slowly as the mass increases; (b) SMBH coalescences leave little long--term effect on aˉ\bar a; (c) SMBH coalescence products in general have modest recoil velocities, so that there is little likelihood of their being ejected from the host galaxy; (d) black holes can grow even from stellar masses to \sim 5\times 10^9 \msun at high redshift z∌6z\sim 6; (e) jets produced in successive accretion episodes can have similar directions, but after several episodes the jet direction deviates significantly. Rare examples of massive holes with larger spin parameters could result from prograde coalescences with SMBH of similar mass, and are most likely to be found in giant ellipticals. We compare these results with observation. (abridged)Comment: MNRAS, in pres

    Symbiotic starburst-black hole AGN -- I. Isothermal hydrodynamics of the mass-loaded ISM

    Full text link
    Compelling evidence associates the nuclei of active galaxies and massive starbursts. The symbiosis between a compact nuclear starburst stellar cluster and a massive black hole can self-consistently explain the properties of active nuclei. The young stellar cluster has a profound effect on the most important observable properties of active galaxies through its gravity, and by mass injection through stellar winds, supernovae and stellar collisions. Mass injection generates a nuclear ISM which flows under gravitational and radiative forces until it leaves the nucleus or is accreted onto the black hole or accretion disc. The radiative force exerted by the black hole--accretion disc radiation field is not spherically symmetric. This results in complex flows in which regions of inflow can coexist with high Mach number outflowing winds and hydrodynamic jets. We present two-dimensional hydrodynamic models of such nISM flows, which are highly complex and time variable. Shocked shells, jets and explosive bubbles are produced, with bipolar winds driving out from the nucleus. Our results graphically illustrate why broad emission line studies have consistently failed to identify any simple, global flow geometry. The real structure of the flows is _inevitably_ yet more complex.Comment: 51 pages, 85 postscript figures, Latex, using MNRAS macros, to be published in MNRAS. Postscript will full resolution pictures and mpeg simulations available via http://ast.leeds.ac.uk/~rjrw/agn.htm

    Phasic Phosphorylation of Caldesmon and ERK 1/2 during Contractions in Human Myometrium

    Get PDF
    Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction
    • 

    corecore