103 research outputs found

    HST STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-line Seyfert 1 Galaxies: II. Modeling and Interpretation

    Full text link
    We present modeling to explore the conditions of the broad-line emitting gas in two extreme Narrow-line Seyfert 1 galaxies, using the observational results described in the first paper of this series. Photoionization modeling using Cloudy was conducted for the broad, blueshifted wind lines and the narrow, symmetric, rest-wavelength-centered disk lines separately. A broad range of physical conditions were explored for the wind component, and a figure of merit was used to quantitatively evaluate the simulation results. Of the three minima in the figure-of-merit parameter space, we favor the solution characterized by an X-ray weak continuum, elevated abundances, a small column density (log(N_H)\approx 21.4), relatively high ionization parameter (log(U)\approx -1.2 - -0.2), a wide range of densities (log(n)\approx 7 - 11), and a covering fraction of ~0.15. The presence of low-ionization emission lines implies the disk component is optically thick to the continuum, and the SiIII]/CIII] ratio implies a density of 10^10 - 10^10.25 cm^-3. A low ionization parameter (log(U)=-3) is inferred for the intermediate-ionization lines, unless the continuum is ``filtered'' through the wind before illuminating the intermediate-line emitting gas, in which case log(U)=-2.1. The location of the emission regions was inferred from the photoionization modeling and a simple ``toy'' dynamical model. A large black hole mass (1.3 x 10^8 M_\odot) radiating at 11% of the Eddington luminosity is consistent with the kinematics of both the disk and wind lines, and an emission radius of ~10^4 R_S is inferred for both. We compare these results with previous work and discuss implications.Comment: 45 pages, 15 figures (4 color), accepted for publication in ApJ, abstract shortene

    On the turbulent α\alpha-disks and the intermittent activity in AGN

    Full text link
    We consider effects of the MHD turbulence on the viscosity during the evolution of the thermal-viscous ionization instability in the standard α\alpha-accretion disks. We consider the possibility that the accretion onto a supermassive black hole proceeds through an outer standard accretion disk and inner, radiatively inefficient and advection dominated flow. In this scenario we follow the time evolution of the accretion disk in which the viscosity parameter α\alpha is constant throughout the whole instability cycle, as implied by the strength of MHD turbulence. We conclude that the hydrogen ionization instability is a promising mechanism to explain the intermittent activity in AGN.Comment: 13 pages, 9 figures; ApJ accepte

    Modelling CO emission from Mira's wind

    Full text link
    We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new observational constraints. These are obtained from photospheric light scattered in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6 micron: absolute fluxes, the radial dependence of the scattered intensity, and two line ratios. Further observational constraints are provided by ISO observations of far-IR emission lines from highly excited rotational states of the ground vibrational state of CO, and radio observations of lines from rotational levels of low excitation of CO. A code based on the Monte-Carlo technique is used to model the circumstellar line emission. We find that it is possible to model the radio and ISO fluxes, as well as the highly asymmetric radio-line profiles, reasonably well with a spherically symmetric and smooth stellar wind model. However, it is not possible to reproduce the observed NIR line fluxes consistently with a `standard model' of the stellar wind. This is probably due to incorrectly specified conditions of the inner regions of the wind model, since the stellar flux needs to be larger than what is obtained from the standard model at the point of scattering, i.e., the intermediate regions at approximately 100-400 stellar radii (2"-7") away from the star. Thus, the optical depth in the vibrational-rotational lines from the star to the point of scattering has to be decreased. This can be accomplished in several ways. For instance, the gas close to the star (within approximately 2") could be in such a form that light is able to pass through, either due to the medium being clumpy or by the matter being in radial structures (which, further out, developes into more smooth or shell-like structures).Comment: 18 pages, 3 figures, accepted for publication in Ap

    Mira's wind explored in scattering infrared CO lines

    Get PDF
    We have observed the intermediate regions of the circumstellar envelope of Mira (o Ceti) in photospheric light scattered by three vibration-rotation transitions of the fundamental band of CO, from low-excited rotational levels of the ground vibrational state, at an angular distance of beta = 2"-7" away from the star. The data were obtained with the Phoenix spectrometer mounted on the 4 m Mayall telescope at Kitt Peak. The spatial resolution is approximately 0.5" and seeing limited. Our observations provide absolute fluxes, leading to an independent new estimate of the mass-loss rate of approximately 3e-7 Msun/yr, as derived from a simple analytic wind model. We find that the scattered intensity from the wind of Mira for 2" < beta < 7" decreases as beta^-3, which suggests a time constant mass-loss rate, when averaged over 100 years, over the past 1200 years.Comment: accepted for publication in the Astrophysical Journa

    The Evolution of Black Hole Mass and Spin in Active Galactic Nuclei

    Full text link
    We argue that supermassive black hole growth in AGN occurs via sequences of randomly--oriented accretion discs with angular momentum limited by self--gravity. These stably co-- or counter--align with the black hole spin with almost equal frequency. Accretion from these discs very rapidly adjusts the hole's spin parameter to average values aˉ0.10.3\bar a \sim 0.1-0.3 (the precise range depending slightly on the disc vertical viscosity coefficient α2\alpha_2) from any initial conditions, but with significant fluctuations (Δa±0.2\Delta a\sim \pm 0.2) about these. We conclude (a) AGN black holes should on average spin moderately, with the mean value aˉ\bar a decreasing slowly as the mass increases; (b) SMBH coalescences leave little long--term effect on aˉ\bar a; (c) SMBH coalescence products in general have modest recoil velocities, so that there is little likelihood of their being ejected from the host galaxy; (d) black holes can grow even from stellar masses to \sim 5\times 10^9 \msun at high redshift z6z\sim 6; (e) jets produced in successive accretion episodes can have similar directions, but after several episodes the jet direction deviates significantly. Rare examples of massive holes with larger spin parameters could result from prograde coalescences with SMBH of similar mass, and are most likely to be found in giant ellipticals. We compare these results with observation. (abridged)Comment: MNRAS, in pres

    Evolution of the X-ray spectrum in the flare model of Active Galactic Nuclei

    Full text link
    Nayakshin & Kazanas (2002) have considered the time-dependent illumination of an accretion disc in Active Galactic Nuclei, in the lamppost model. We extend their study to the flare model, which postulates the release of a large X-ray flux above a small region of the accretion disc. A fundamental difference with the lamppost model is that the region of the disc below the flare is not illuminated before the onset of the flare. A few test models show that the spectrum which follows immediately the increase in continuum flux should display the characteristics of a highly illuminated but dense gas, i.e. very intense X-ray emission lines and ionization edges in the soft X-ray range. The behaviour of the iron line is different in the case of a "moderate" and a ``strong'' flare: for a moderate flare, the spectrum displays a neutral component of the Fe Kα\alpha line at 6.4 keV, gradually leading to more highly ionized lines. For a strong flare, the lines are already emitted by FeXXV (around 6.7 keV) after the onset, and have an equivalent width of several hundreds of eV. We find that the observed correlations between RR, Γ\Gamma, and the X-ray flux, are well accounted by a combination of flares having not achieved pressure equilibrium, strongly suggesting that the observed spectrum is dominated by regions in non-pressure equilibrium, typical of the onset of the flares. Finally a flare being confined to a small region of the disc, the spectral lines should be narrow (except for a weak Compton broadening), Doppler shifted, and moving.Comment: 14 pages, 13 figures, accepted in A & A, english corrected versio

    Interpreting the Variability of Double-Peaked Emission Lines in Active Galactic Nuclei with Stochastically Perturbed Accretion Disk Models

    Full text link
    In an effort to explain the short-timescale variability of the broad, double-peaked profiles of some active galactic nuclei, we constructed stochastically perturbed accretion disk models and calculated H alpha line profile series as the bright spots rotate, shear and decay. We determined the dependence of the properties of the line profile variability on the spot properties. We compared the variability of the line profile from the models to the observed variability of the H alpha line of Arp 102B and 3C 390.3. We find that spots need to be concentrated in the outer parts of the line emitting region to reproduce the observed variability properties for Arp 102B. This rules out spot production by star/disk collisions and favors a scenario where the radius of marginal self-gravity is within the line emitting region, creating a sharp increase in the radial spot distribution in the outer parts. In the case of 3C 390.3, all the families of models that we tested can reproduce the observed variability for a suitable choice of model parameters.Comment: 27 pages, 8 figures, accepted for publication in Ap

    Observations of H3+ in the Diffuse Interstellar Medium

    Get PDF
    Surprisingly large column densities of H3+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H3+ column densities imply unreasonably long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H3+ must be increased by one to two orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller value of the H3+ dissociative recombination rate constant than implied by laboratory experiments.Comment: To be published in Astrophysical Journal, March 200

    New Analytical Formula for Supercritical Accretion Flows

    Get PDF
    We examine a new family of global analytic solutions for optically thick accretion disks, which includes the supercritical accretion regime. We found that the ratio of the advection cooling rate, QadvQ_{\rm adv}, to the viscous heating rate, QvisQ_{\rm vis}, i.e., f=Qadv/Qvisf=Q_{\rm adv}/Q_{\rm vis}, can be represented by an analytical form dependent on the radius and the mass accretion rate. The new analytic solutions can be characterized by the photon-trapping radius, \rtrap, inside which the accretion time is less than the photon diffusion time in the vertical direction; the nature of the solutions changes significantly as this radius is crossed. Inside the trapping radius, ff approaches fr0f \propto r^0, which corresponds to the advection-dominated limit (f1f \sim 1), whereas outside the trapping radius, the radial dependence of ff changes to fr2f \propto r^{-2}, which corresponds to the radiative-cooling-dominated limit. The analytical formula for ff derived here smoothly connects these two regimes. The set of new analytic solutions reproduces well the global disk structure obtained by numerical integration over a wide range of mass accretion rates, including the supercritical accretion regime. In particular, the effective temperature profiles for our new solutions are in good agreement with those obtained from numerical solutions. Therefore, the new solutions will provide a useful tool not only for evaluating the observational properties of accretion flows, but also for investigating the mass evolution of black holes in the presence of supercritical accretion flows.Comment: 14 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Generation of cardio-protective antibodies after pneumococcal polysaccharide vaccine: Early results from a randomised controlled trial.

    Full text link
    BACKGROUND AND AIMS: Observational studies have demonstrated that the pneumococcal polysaccharide vaccine (PPV) is associated with reduced risk of cardiovascular events. This may be mediated through IgM antibodies to OxLDL, which have previously been associated with cardioprotective effects. The Australian Study for the Prevention through Immunisation of Cardiovascular Events (AUSPICE) is a double-blind, randomised controlled trial (RCT) of PPV in preventing ischaemic events. Participants received PPV or placebo once at baseline and are being followed-up for incident fatal and non-fatal myocardial infarction or stroke over 6 years. METHODS: A subgroup of participants at one centre (Canberra; n = 1,001) were evaluated at 1 month and 2 years post immunisation for changes in surrogate markers of atherosclerosis, as pre-specified secondary outcomes: high-sensitive C-reactive protein (CRP), pulse wave velocity (PWV), and carotid intima-media thickness (CIMT). In addition, 100 participants were randomly selected in each of the intervention and control groups for measurement of anti-pneumococcal antibodies (IgG, IgG2, IgM) as well as anti-OxLDL antibodies (IgG and IgM to CuOxLDL, MDA-LDL, and PC-KLH). RESULTS: Concentrations of anti-pneumococcal IgG and IgG2 increased and remained high at 2 years in the PPV group compared to the placebo group, while IgM increased and then declined, but remained detectable, at 2 years. There were statistically significant increases in all anti-OxLDL IgM antibodies at 1 month, which were no longer detectable at 2 years; there was no increase in anti-OxLDL IgG antibodies. There were no significant changes in CRP, PWV or CIMT between the treatment groups at the 2-year follow-up. CONCLUSIONS: PPV engenders a long-lasting increase in anti-pneumococcal IgG, and to a lesser extent, IgM titres, as well as a transient increase in anti-OxLDL IgM antibodies. However, there were no detectable changes in surrogate markers of atherosclerosis at the 2-year follow-up. Long-term, prospective follow-up of clinical outcomes is continuing to assess if PPV reduces CVD events
    corecore