243 research outputs found

    Chromodomain proteins in development: lessons from CHARGE syndrome

    Full text link
    Layman WS, Hurd EA, Martin DM. Chromodomain proteins in development: lessons from CHARGE syndrome.In humans, heterozygous mutations in the adenosine triphosphate-dependent chromatin remodeling gene CHD7 cause CHARGE syndrome, a common cause of deaf–blindness, balance disorders, congenital heart malformations, and olfactory dysfunction with an estimated incidence of approximately 1 in 10,000 newborns. The clinical features of CHARGE in humans and mice are highly variable and incompletely penetrant, and most mutations appear to result in haploinsufficiency of functional CHD7 protein. Mice with heterozygous loss of function mutations in Chd7 are a good model for CHARGE syndrome, and analyses of mouse mutant phenotypes have begun to clarify a role for CHD7 during development and into adulthood. Chd7 heterozygous mutant mice have postnatal delayed growth, inner ear malformations, anosmia/hyposmia, and craniofacial defects, and Chd7 homozygous mutants are embryonic lethal. A central question in developmental biology is how chromodomain proteins like CHD7 regulate important developmental processes, and whether they directly activate or repress downstream gene transcription or act more globally to alter chromatin structure and/or function. CHD7 is expressed in a wide variety of tissues during development, suggesting that it has tissue-specific and developmental stage-specific roles. Here, we review recent and ongoing analyses of CHD7 function in mouse models and cell-based systems. These studies explore tissue-specific effects of CHD7 deficiency, known CHD7 interacting proteins, and downstream target sites for CHD7 binding. CHD7 is emerging as a critical regulator of important developmental processes in organs affected by human CHARGE syndrome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79089/1/j.1399-0004.2010.01446.x.pd

    Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    Get PDF
    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome

    Functional Analysis of Retinitis Pigmentosa 2 (RP2) Protein Reveals Variable Pathogenic Potential of Disease-Associated Missense Variants

    Get PDF
    Genetic mutations are frequently associated with diverse phenotypic consequences, which limits the interpretation of the consequence of a variation in patients. Mutations in the retinitis pigmentosa 2 (RP2) gene are associated with X-linked RP, which is a phenotypically heterogenic form of retinal degeneration. The purpose of this study was to assess the functional consequence of disease-associated mutations in the RP2 gene using an in vivo assay. Morpholino-mediated depletion of rp2 in zebrafish resulted in perturbations in photoreceptor development and microphthalmia (small eye). Ultrastructural and immunofluorescence analyses revealed defective photoreceptor outer segment development and lack of expression of photoreceptor-specific proteins. The retinopathy phenotype could be rescued by expressing the wild-type human RP2 protein. Notably, the tested RP2 mutants exhibited variable degrees of rescue of rod versus cone photoreceptor development as well as microphthalmia. Our results suggest that RP2 plays a key role in photoreceptor development and maintenance in zebrafish and that the clinical heterogeneity associated with RP2 mutations may, in part, result from its potentially distinct functional relevance in rod versus cone photoreceptors

    The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Get PDF
    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [I-123]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 +/- 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 +/- 5 years). The FD patients had a lower left plus right average striatal binding potential (BPNP) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BPNP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathway

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression

    Get PDF
    CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation

    Systematic evaluation of genome-wide methylated DNA enrichment using a CpG island array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent progress in high-throughput technologies has greatly contributed to the development of DNA methylation profiling. Although there are several reports that describe methylome detection of whole genome bisulfite sequencing, the high cost and heavy demand on bioinformatics analysis prevents its extensive application. Thus, current strategies for the study of mammalian DNA methylomes is still based primarily on genome-wide methylated DNA enrichment combined with DNA microarray detection or sequencing. Methylated DNA enrichment is a key step in a microarray based genome-wide methylation profiling study, and even for future high-throughput sequencing based methylome analysis.</p> <p>Results</p> <p>In order to evaluate the sensitivity and accuracy of methylated DNA enrichment, we investigated and optimized a number of important parameters to improve the performance of several enrichment assays, including differential methylation hybridization (DMH), microarray-based methylation assessment of single samples (MMASS), and methylated DNA immunoprecipitation (MeDIP). With advantages and disadvantages unique to each approach, we found that assays based on methylation-sensitive enzyme digestion and those based on immunoprecipitation detected different methylated DNA fragments, indicating that they are complementary in their relative ability to detect methylation differences.</p> <p>Conclusions</p> <p>Our study provides the first comprehensive evaluation for widely used methodologies for methylated DNA enrichment, and could be helpful for developing a cost effective approach for DNA methylation profiling.</p

    Cross-sectional validation of the Aging Perceptions Questionnaire: a multidimensional instrument for assessing self-perceptions of aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-perceptions of aging have been implicated as independent predictors of functional disability and mortality in older adults. In spite of this, research on self-perceptions of aging is limited. One reason for this is the absence of adequate measures. Specifically, there is a need to develop a measure that is theoretically-derived, has good psychometric properties, and is multidimensional in nature. The present research seeks to address this need by adopting the Self-Regulation Model as a framework and using it to develop a comprehensive, multi-dimensional instrument for assessing self-perceptions of aging. This study describes the validation of this newly-developed instrument, the Aging Perceptions Questionnaire (APQ).</p> <p>Methods</p> <p>Participants were 2,033 randomly selected community-dwelling older (+65 yrs) Irish adults who completed the APQ alongside measures of physical and psychological health. The APQ assesses self-perceptions of aging along eight distinct domains or subscales; seven of these examine views about own aging, these are: timeline chronic, timeline cyclical, consequences positive, consequences negative, control positive, control negative, and emotional representations; the eighth domain is the identity domain and this examines the experience of health-related changes.</p> <p>Results</p> <p>Mokken scale analysis showed that the majority of items within the views about aging subscales were strongly scalable. Confirmatory factor analysis also indicated that the model provided a good fit for the data. Overall, subscales had good internal reliabilities. Hierarchical linear regression was conducted to investigate the independent contribution of APQ subscales to physical and psychological health and in doing so determine the construct validity of the APQ. Results showed that self-perceptions of aging were independently related to physical and psychological health. Mediation testing also supported a role for self-perceptions of aging as partial mediators in the relationship between indices of physical functioning and physical and psychological health outcomes.</p> <p>Conclusion</p> <p>Findings support the complex and multifaceted nature of the aging experience. The good internal reliability and construct validity of the subscales suggests that the APQ is a promising instrument that can enable a theoretically informed, multidimensional assessment of self-perceptions of aging. The potential role of self-perceptions of aging in facilitating physical and psychological health in later life is also highlighted.</p
    corecore