2,164 research outputs found

    Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma

    Get PDF
    Electromagnetically induced transparency (EIT), a phenomenon well known in atomic systems, has a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for right-hand polarized electromagnetic waves at the electron cyclotron frequency Omega(0), so that a probe wave with frequency omega(1) = Omega(0) cannot propagate through the plasma. The plasma can be made transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation, and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The theory of plasma EIT derived here extends that found in the earlier work to include the effects of the lower sideband of the pump and renormalization of the plasma frequency and an analysis of the transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations is presented and estimates for the performance ion accelerator using the EIT interaction are given. The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are in good agreement with particle-in-cell simulations.open151

    Zeeman smearing of the Coulomb blockade

    Full text link
    Charge fluctuations of a large quantum dot coupled to a two-dimensional lead via a single-mode good Quantum Point Contact (QPC) and capacitively coupled to a back-gate, are investigated in the presence of a parallel magnetic field. The Zeeman term induces an asymmetry between transmission probabilities for the spin-up and spin-down channels at the QPC, producing noticeable effects on the quantization of the grain charge already at low magnetic fields. Performing a quantitative analysis, I show that the capacitance between the gate and the lead exhibits - instead of a logarithmic singularity - a reduced peak as a function of gate voltage. Experimental applicability is discussed.Comment: 5 pages, 3 figures (Final version

    Synthesizing SystemC Code from Delay Hybrid CSP

    Full text link
    Delay is omnipresent in modern control systems, which can prompt oscillations and may cause deterioration of control performance, invalidate both stability and safety properties. This implies that safety or stability certificates obtained on idealized, delay-free models of systems prone to delayed coupling may be erratic, and further the incorrectness of the executable code generated from these models. However, automated methods for system verification and code generation that ought to address models of system dynamics reflecting delays have not been paid enough attention yet in the computer science community. In our previous work, on one hand, we investigated the verification of delay dynamical and hybrid systems; on the other hand, we also addressed how to synthesize SystemC code from a verified hybrid system modelled by Hybrid CSP (HCSP) without delay. In this paper, we give a first attempt to synthesize SystemC code from a verified delay hybrid system modelled by Delay HCSP (dHCSP), which is an extension of HCSP by replacing ordinary differential equations (ODEs) with delay differential equations (DDEs). We implement a tool to support the automatic translation from dHCSP to SystemC

    Critical Ising modes in low-dimensional Kondo insulators

    Full text link
    We present an Ising-like intermediate phase for one-dimensional Kondo insulator systems. Resulting from a spinon splitting, its low-energy excitations are critical Ising modes, whereas the triplet sector has a spectral gap. It should occur as long as the RKKY oscillation amplitude dominates over any direct exchange between localized spins. The chiral fixed point, however, becomes unstable in the far Infra-Red limit due to prevalent fluctuations among localized spins which induce gapless triplet excitations in the spectrum. Based on previous numerical results, we obtain a paramagnetic disordered state ruled by the correlation length of the single impurity Kondo model.Comment: 7 pages, RevTeX; last version: to be published in Physical Review

    Giant Magnetoelectric Effect in a Multiferroic Material with a High Ferroelectric Transition Temperature

    Full text link
    We present a unique example of giant magnetoelectric effect in a conventional multiferroic HoMnO3, where polarization is very large (~56 mC/m2) and the ferroelectric transition temperature is higher than the magnetic ordering temperature by an order. We attribute the uniqueness of the giant magnetoelectric effect to the ferroelectricity induced entirely by the off-center displacement of rare earth ions with large magnetic moments. This finding suggests a new avenue to design multiferroics with large polarization and higher ferroelectric transition temperature as well as large magnetoelectric effects

    Transport through a quantum dot with SU(4) Kondo entanglement

    Full text link
    We investigate a mesoscopic setup composed of a small electron droplet (dot) coupled to a larger quantum dot (grain) also subject to Coulomb blockade as well as two macroscopic leads used as source and drain. An exotic Kondo ground state other than the standard SU(2) Fermi liquid unambiguously emerges: an SU(4) Kondo correlated liquid. The transport properties through the small dot are analyzed for this regime, through boundary conformal field theory, and allow a clear distinction with other regimes such as a two-channel spin state or a two-channel orbital state.Comment: 13 pages, 3 figure

    Metal-Kondo insulating transitions and transport in one dimension

    Full text link
    We study two different metal-insulating transitions possibly occurring in one-dimensional Kondo lattices. First, we show how doping the pure Kondo lattice model in the strong-coupling limit, results in a Pokrovsky-Talapov transition. This produces a conducting state with a charge susceptibility diverging as the inverse of the doping, that seems in agreement with numerical datas. Second, in the weak-coupling region, Kondo insulating transitions arise due to the consequent renormalization of the backward Kondo scattering. Here, the interplay between Kondo effect and electron-electron interactions gives rise to significant phenomena in transport, in the high-temperature delocalized (ballistic) regime. For repulsive interactions, as a perfect signature of Kondo localization, the conductivity is found to decrease monotonically with temperature. When interactions become attractive, spin fluctuations in the electron (Luttinger-type) liquid are suddenly lowered. The latter is less localized by magnetic impurities than for the repulsive counterpart, and as a result a large jump in the Drude weight and a maximum in the conductivity arise in the entrance of the Kondo insulating phase. These can be viewed as remnants of s-wave superconductivity arising for attractive enough interactions. Comparisons with transport in the single impurity model are also performed. We finally discuss the case of randomly distributed magnetic defects, and the applications on persistent currents of mesoscopic rings.Comment: 21 pages, two columns, 5 figures and 1 table; Final version: To appear in Physical Review

    Fabrication of high performance MgB2 wires by an internal Mg diffusion process

    Full text link
    We succeeded in the fabrication of high-Jc MgB2/Fe wires applying the internal Mg diffusion (IMD) process with pure Mg core and SiC addition. A pure Mg rod with 2 mm diameter was placed at the center of a Fe tube, and the space between Mg and Fe tube was filled with B powder or the powder mixture of B-(5mol%)SiC. The composite was cold worked into 1.2mm diameter wire and finally heat treated at temperatures above the melting point of Mg(~650oC). During the heat treatment liquid Mg infiltrated into B layer and reacted with B to form MgB2. X-ray diffraction analysis indicated that the major phase in the reacted layer is MgB2. SEM analysis shows that the density of MgB2 layer is higher than that of usual powder-in-tube(PIT) processed wires. The wires with 5mol% SiC addition heat treated at 670oC showed Jc values higher than 105A/cm2 in 8T and 41,000A/cm2 in 10T at 4.2K. These values are much higher than those of usual PIT processed wires even compared to the ones with SiC addition. Higher density of MgB2 layer obtained by the diffusion reaction is the major cause of this excellent Jc values.Comment: 7page, 6figure

    The electron lifetime in Luttinger liquids

    Full text link
    We investigate the decoherence of the electron wavepacket in purely ballistic one-dimensional systems described through the Luttinger liquid (LL). At a finite temperature TT and long times tt, we show that the electron Green's function for a fixed wavevector close to one Fermi point decays as exp(t/τF)\exp(-t/\tau_F), as opposed to the power-law behavior occurring at short times, and the emerging electron lifetime obeys τF1T\tau_F^{-1}\propto T for spinful as well as spinless electrons. For strong interactions, (TτF)1(T\tau_F)\ll 1, reflecting that the electron is not a good Landau quasiparticle in LLs. We justify that fractionalization is the main source of electron decoherence for spinful as well as spinless electrons clarifying the peculiar electron mass renormalization close to the Fermi points. For spinless electrons and weak interactions, our intuition can be enriched through a diagrammatic approach or Fermi Golden rule and through a Johnson-Nyquist noise picture. We stress that the electron lifetime (and the fractional quasiparticles) can be revealed from Aharonov-Bohm experiments or momentum resolved tunneling. We aim to compare the results with those of spin-incoherent and chiral LLs.Comment: 20 pages, 1 column, 6 figures, 1 Table; expands cond-mat/0110307 and cond-mat/0503652; final version to appear in PR

    Universal Resistances of the Quantum RC circuit

    Full text link
    We examine the concept of universal quantized resistance in the AC regime through the fully coherent quantum RC circuit comprising a cavity (dot) capacitively coupled to a gate and connected via a single spin-polarized channel to a reservoir lead. As a result of quantum effects such as the Coulomb interaction in the cavity and global phase coherence, we show that the charge relaxation resistance RqR_q is identical for weak and large transmissions and it changes from h/2e2h/2e^2 to h/e2h/e^2 when the frequency (times \hbar) exceeds the level spacing of the cavity; hh is the Planck constant and ee the electron charge. For large cavities, we formulate a correspondence between the charge relaxation resistance h/e2h/e^2 and the Korringa-Shiba relation of the Kondo model. Furthermore, we introduce a general class of models, for which the charge relaxation resistance is universal. Our results emphasize that the charge relaxation resistance is a key observable to understand the dynamics of strongly correlated systems.Comment: 12 pages, 3 figure
    corecore