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Electromagnetically induced transparency~EIT!, a phenomenon well known in atomic systems, has
a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for
right-hand polarized electromagnetic waves at the electron cyclotron frequencyV0 , so that a probe
wave with frequencyv15V0 cannot propagate through the plasma. The plasma can be made
transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic
wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the
transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation,
and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The
theory of plasma EIT derived here extends that found in the earlier work to include the effects of the
lower sideband of the pump and renormalization of the plasma frequency and an analysis of the
transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations
is presented and estimates for the performance ion accelerator using the EIT interaction are given.
The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are
in good agreement with particle-in-cell simulations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1580816#

I. INTRODUCTION

Electromagnetically induced transparency~EIT! is a
well-known1,2 quantum phenomenon which is interesting
from an academic point of view and of use for various
applications.3,4 It was recently proposed5,6 that a magnetized
plasma can be used to realize a classical analogy of quantum
EIT. In the classical EIT system considered here, a magne-
tized plasma can be made transparent to a right-hand polar-
ized probe wave with a frequency resonant with the cyclo-
tron frequency. This is accomplished by the presence of a
strong, appropriately detuned, pump wave. The basic idea is
to use the sideband of the pump to cancel the resonant re-
sponse of electrons to the probe. This is conceptually similar
to the quantum EIT in a three-state atomic system where the
transparency is induced by the destructive interference be-
tween several pathways which connect the ground and the
excited states. Transparency can be induced, as well, by a
static helical magnetic wiggler.6–8 The wiggler acts as a zero
frequency pump wave.

The idea of realizing induced transparency in a plasma is
not new. Previous work9–11 examined induced transparency
in unmagnetized plasmas. These papers considered a pump
wave induced transparency for a probe beam that is cut-off
(vprobe,vp). The analysis was based on three-wave and
four-wave interactions. The system did not share many of the
basic features of quantum EIT. For example, transparency of

the probe was induced near a cut-off, not a resonance, and
transparency was induced using a pump with a higher fre-
quency than that of the probe. Furthermore, the rather precise
correspondence between the magnetized plasma EIT disper-
sion relation and quantum EIT is not found in studies of
unmagnetized plasma transparency.

One of the potential applications of the magnetized
plasma EIT system is as an advanced accelerator for ions.
Plasma-based advanced accelerators, in which the accelerat-
ing structure is generated from the interaction between a
plasma and a high intensity laser pulse or a relativistic elec-
tron beam, have been the subject of intensive study.12 In the
laser beat wave and wake field schemes, as well as the beam-
driven wake field, the plasma wave has a phase velocity
nearly the speed of light. Thus, it is useful for accelerating
electrons, but not proper for non-relativistic heavy particle
acceleration. In contrast, a plasma wave generated in the EIT
system has numerous properties desirable for a heavy par-
ticle accelerator. The simulated accelerating gradient is of
order 43107 V/m for realizable 1 T solenoidal fields. The
phase velocity is slow, which makes it possible to trap non-
relativistic heavy particles. Furthermore, the phase velocity
is readily controlled by adjusting the wiggler wavelength.
Resonance with the cyclotron frequency implies, for typical
parameters, electromagnetic waves in the microwave fre-
quency region.
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This paper is organized as follows. Section II reviews
the basic theory of our concept, expanding on a shorter ver-
sion of the theory presented elsewhere.6 In Sec. III, we in-
vestigate detailed properties of EIT using a one-dimensional
particle-in-cell~PIC! simulation and compare the simulations
with theory. In Sec. IV, the application of EIT as an advanced
accelerator is discussed. A summary is given in the last
section.

II. BASIC CONCEPT AND FORMALISM

A. Analysis of the steady-state motion

We consider a magnetized plasma with densityn0 and
external magnetic fieldB05B0ez . The dispersion relation of
a right-hand polarized electromagnetic wave~probe! is

v1
25c2k21vp

2 v1

v12V0
, ~1!

where vp5A4pn0e2/m, V05eB0 /mc, m is the electron
mass,e the electron charge, andc is the speed of light. The
dispersion relation has a band gap betweenV0 and V0/2
1AV0

2/41vp
2, where the probe transmission is prohibited.

Since a large transverse electron current is resonantly excited
at v15V0 , most of the probe energy is absorbed in the
plasma. Following the calculation outlined in Ref. 6, we
show that when there exists a pump electromagnetic wave,
the electron transverse current can be suppressed by a side-
band of the pump field induced by longitudinal electron mo-
tion in the beat wave of the pump and probe. In the presence
of the ponderomotive potential produced by the beat between
the probe and the pump, electrons move longitudinally, with
their positions and velocities varying ase2 iDvt1 iDkz, where
Dv (Dk) is the beat frequency~wavenumber! between the
pump and the probe. The pump electric field, as seen by a
given slice of plasma, is approximated asEpump(z,t)
;Epump(z0 ,t)1z3]zEpump, wherez5z01z, z0 represents
the initial position of the slice, andz is its longitudinal dis-
placement. The second term couples the longitudinal motion
and the transverse field, thereby inducing sidebands at fre-
quenciesv06Dv. The Lorentz force (2e/c) żÃBpump also
couples the pump and the longitudinal motion producing the
sidebands at the same frequencies. A critical aspect of in-
duced transparency in plasma is that the perpendicular elec-
tron motion due to the probe electric field is canceled by the
response to the upper sideband~which is at the probe fre-
quency!.

The above-described process can be shown mathemati-
cally by a steady-state analysis of electron motion in an axial
magnetic fieldB0ez and perpendicular electromagnetic fields
of the pump and the probe.6,7 The non-relativistic equations
of motion are

dv'

dt
52

e

m
S E'1

v'ÃB0ez

c
1

żezÃB'

c
D ~2!

and

z̈1vp
2z52

e

mc
v'ÃB' , ~3!

whereE' andB' are the combined fields of the pump and
the probe, andz is the longitudinal plasma displacement
from the initial positionz0 . The vp

2z term on the left-hand
side of Eq.~3! is due to the restoring force of the neutralizing
immobile ion background. The perpendicular fields are given
by

2eE'0,1/mcv0,15a0,1e1 exp~ i ū0,1!1c.c. ~4!

and

B'0,15~ck0,1/v0,1!ÃE'0,1, ~5!

where a0,1 are normalized vector potentials (a0,1

5eA0,1/mc2), e65ex6 iey , ū0,15k0,1z2v0,1t, and the sub-
scripts 0 and 1 refer to the pump and the probe, respectively.
For convenience, we usee6 as unit vectors of a new coordi-
nate system. The perpendicular velocity is expanded asb'

5v' /c5(b1e11b2e2)/2, whereb65(vx7 ivy)/c.
Assuming a weak probe (a1!a0) and perturbative lon-

gitudinal motion (k0,1z!1), we linearize Eqs.~2! and~3! in
z anda1 as

ḃ11 iV0b152v0a0eiu0~11 ik0z2k0ż/v0!

2v1a1eiu1, b25b1* , ~6!

z̈1vp
2z52

c2

2
~k0a0b2eiu01k1a1b2eiu1

1 ik0
2zb2a0eiu0!1c.c., ~7!

whereV05eB0 /mc. The eikonal term was approximated as

ei ũ0,1.eiu0,1(11 ik0,1z), whereu0,15k0,1z02v0,1t. The lon-
gitudinal motion in the ponderomotive beat potential is

z5
z̃

2
ei (u12u0)1

z̃*

2
e2 i (u12u0). ~8!

The largest amplitude ofz is generated when the pump fre-
quency,v0 , is detuned from the probe frequency byDv
5v12v0'vp . The beatwave resonance conditionDv
'vp is satisfied only approximately because of the renor-
malization of the plasma frequency from itsvp value, as
explained in the following.

Substituting Eq.~8! into Eq. ~6! yields a steady-state
solution forb1 :

b152
iv0a0

v02V0
eiu02

iv1

v12V0
S a11

ik0z̃

2
a0D eiu1

2
~v122v0!a0

2v02v12V0

k0z̃*

2
e2 iu112iu0. ~9!

The first term on the right-hand side~RHS! of Eq. ~9! is the
electron response to the electric field of the pump. This term
vanishes if the pump is a magnetostatic wiggler (v050).
The second term on the RHS of Eq.~9! is the electron re-
sponse to the electromagnetic fields of the probe (;a1eiu1)
and the upper sideband (; ia0zeiu1) of the pump. The last
term on the RHS of Eq.~9! is due to the lower sideband
of the pump atv02Dv. In the case of a magnetostatic wig-
gler, this term represents the left-hand polarized component
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of the electron velocity. It arises because the magnetic force
of the wiggler acting on a longitudinal plasma wave~propor-
tional to z! has two components: a resonant right-hand
polarized and a non-resonant left-hand polarized one. It is
important to note that a finite solution exists at resonance
(v15V0) when

a11
ik0z̃

2
a050. ~10!

Equation~10! represents the suppression of the probe by the
pump. It can be shown that Eq.~10! gives a stable steady-
state solution forz̃ which is adiabatically reached by slowly
turning on the probe in the presence of the pump. The
steady-state solution is reached only if the plasma is initially
quiescent. Single particle simulations6 lead to the same con-
clusion.

Next we consider the general case ofv1ÞV0 . We
fix the pump detuning atvp5V02v0 . Substituting Eq.~9!
into Eq. ~7!, and writing the time derivative as] t52 iDv,
yields

~vp
22Dv2!z̃5 ic2F k0a0* v1

v12V0
S a11

ik0z̃a0

2
D 2

k1a1v0

v02V0
a0*

2 i
k0

2z̃v0

v02V0
ua0u22

i

2

k0
2z̃~v122v0!

~2v02v12V0!
ua0u2G .

~11!

Note that the second and third terms in the square brackets
vanish for the magnetostatic pump. The fourth term in the
square brackets~which does not vanish even forv050) de-
scribes the renormalization of the plasma frequency due to
the presence of the pump. As previously mentioned, the in-
teraction of the pump with the plasma wave gives rise to the
non-resonant left-handed electron rotation. This rotation, in
turn, couples with the pump so as to produce a longitudinal
force on the electron. For a magnetostatic pump there results
a renormalized plasma frequency given byv̄p

25vp
2

1k0
2c2ua0u2/4.
Eliminating z̃ from Eqs.~9! and ~11! gives the steady-

state perpendicular motion. We retain theeiu1 andeiu0 com-
ponents ofb1 , resulting in

b152
iv0a0

v02V0
eiu02

iv1a1

v02V0
eiu1

c2k0
2ua0u2v0~k1 /k0222X!12~vp

22Dv2!~v02V0!

c2k0
2ua0u2v112~vp

22Dv2!dV

1
i ~v122v0!a1*

2v02v12V0
e2 iu112iu0

c2k0
2a0

2v1

c2k0
2a0

2v112~vp
22Dv2!dV

, ~12!

where

dV5v12V0 ~13!

and

X5
~v122v0!~v02V0!

v0~2v02v12V0!
. ~14!

We ignoredO(dV3) in the denominators of each term in
Eq. ~12!. For simplicity, we also neglected terms propor-
tional to the product ofua0u2 anddV. This is possible since
ua0u is of same order asdV/V0 near the new resonance
between the probe and the EIT plasma, which is verified as
follows: The denominator of the second term in Eq.~12! can
be simplified for dV/V0!1 as D5c2k0

2ua0u2v112(vp
2

2Dv2)dV.4vp(VR
22dV2), where VR5ck0ua0u

3AV0/4vp is the effective Rabi frequency. The plasma is
resonantly driven forD50, which occurs whenv15V0

6VR. Hence, the resonance of the magnetized plasma is
shifted by the pump, and a new transparency band is gener-
ated betweenV02VR andV01VR . For typical parameters
of V0 /vp;4 andck0;v0 , the Rabi frequency is approxi-
matelyv0ua0u. Hence the normalized detuningdV/V0 near
the resonance becomesua0uv0 /V0 , wherev0 /V0;1. When
the probe, pump, and plasma frequencies match each other
exactly~dV;0!, all the terms includingdV may be ignored.
Therefore, neglectingua0u2dV is a good approximation

in the two most interesting regimes. Note that the termX
did not appear in the original theory.6 We expect there to be
only a minor change from Ref. 6 near the EIT resonance at
v1.V0. The lower sideband contains the physics of the Ra-
man instability of the pump for the casev1;v02vp. Fur-
thermore, we have checked that including this term results in
only a small shift of the dispersion curve toward largerk1 .
For example, for a magnetostatic pump, complete transpar-
ency (v15k1c) is achieved whenv15V05v̄p .

The dispersion relation of the probe is derived from the
wave equation:

~] t
22c2]z

2!E1524p] tJ154pen0] tu1 , ~15!

whereE1 is the probe electric field,J1 the right-hand po-
larized eiu1 component of the current,n0 the unperturbed
plasma density, andu1 the fluid velocity of the plasma. The
fluid velocity u1 is derived from the single electron velocity
b1 . Any electron with its initial positionz0 and its longitu-
dinal displacementz contributes to the fluid velocity at
z5z01z. Hence, the fluid velocity is given byu1 /c
5 b1(z) 5 * 2`

` dz0b1(z0)d(z2 z02z) . b1 2 ]z( zb1).
Using this formula and Eqs.~8! and ~12!, we calculate the
eiu1 component of the fluid velocity:

b15 iv1a1eiu1
dV1dV0~k1!

VR
22dV2 , ~16!
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wheredV0(k1)5(2v0VR
2/vpV0)(k1 /k0212X/2). Substi-

tuting Eq.~16! into Eq. ~15! yields

v1
25c2k1

22vp
2v1

dV1dV0~k1!

VR
22dV2 . ~17!

As expected, Eq.~17! reduces to theR-polarized dispersion
relation of a single wave in a magnetized plasma fordV
@VR.

The pump wave can be replaced by a helical magnetic
wiggler with wavelengthlw . In this case, the wiggler corre-
sponds to a pump with zero-frequency and wavenumberkw

52p/lw . Therefore, the frequency matching condition
should bevp5v12v05v1 . The wiggler is modeled in a
one-dimensional limit as

Bw.
mcVw

2e
e7 ikwze11c.c., ~18!

where Vw5eBw /mc, and the 7 sign denotes left-hand
~right-hand! polarization of the wiggler. Comparing the static
wiggler magnetic field Eq.~18! to the dynamic magnetic
field of the pump,

Bpump5
mc2k0

2e
~2 ia0eik0z2 iv0te11c.c.!, ~19!

we see that we can replacea0 , k0 , andv0 in Eqs.~10! and
~12! by iVw /ckw , kw , and zero, respectively, so as to cal-
culate the steady-state solutions for the wiggler system in a
straightforward manner. The amplitude of electron longitudi-
nal motion for resonance (v15V0) becomes

z̃5
2ca1

Vw
. ~20!

The steady-state transverse motion for detuned probe (v1

ÞV0 andvp5V0) is

b152
iv1a1~v1Vw

2 22~V01v1!2dV!

2v1
2Vw

2 22~V01v1!2dV2 eiu1

1
iv1

2a1* Vw
2

2v1
2Vw

2 22~v11V0!2dV2 e2 iu172ikwz. ~21!

The dispersion relation is derived using (c2]z
22] t

2)E1

54p] tJ and theeiu1 component ofJ calculated from Eq.
~21!:

v1
25c2k1

22vp
2v1

dV2Vw
2 /8V0

Vw
2 /42dV2 . ~22!

Here, only weak detuning (dV/v1!1) is considered and
Vw

2 dV was ignored.
Perfect transparency (v15ck1) is achieved for a finite

detuningdV5Vw
2 /8V0 . This is a consequence of our choice

of V05vp . In reality, the effective plasma frequencyv̄p

'vp1Vw
2 /8vp in the presence of the wiggler is slightly

higher. Therefore, exact resonance requires that both the cy-
clotron frequencyV0 and the probe frequencyv15v̄p be
slightly higher, in agreement with Eq.~22!.

B. Temporal evolution of the longitudinal motion

In Sec. II A, we derived the steady-state motion of a
single electron interacting with electromagnetic waves and a
longitudinal harmonic field. The existence of the steady-state
solutions is ensured by Eqs.~10! and~20!. In this section, we
investigate the temporal trajectory from the initial state (z̃
50) to the steady state.

Replacingz by Eq. ~8!, we arrange the driving terms of
Eq. ~6! as pump, lower sideband, probe, and upper sideband:

ḃ11 iV0b152v0a0eiu01
i

2
k0~v122v0!a0z̃* ei (2u02u1)

2v1a1eiu12
i

2
k0v1a0z̃eiu1, ~23!

where z̃ and a1 are slowly varying amplitudes. We assume
that the electron is already in steady state with the pump.
Another assumption is that the electron responds to the lower
sideband in quasi-steady manner, i.e., the electron motion
driven by the lower sideband is always in steady state, with
its amplitude changing slowly in accordance withz̃* (t)
given by the third term on the RHS of Eq.~9!. The solutions
of b1 driven by the pump and the lower sideband are the
same as in the previous section. No steady state can be as-
sumed, however, for the resonant driving terms~the probe
and the upper sideband!. Instead, the transverse motion is
decomposed into the product of a slowly varying amplitude
b̃1(t) and a fast oscillationeiu1. The equation forb̃1(t)
becomesdb̃1 /dt52v1a12 ik0v1a0z̃/2, which yields

b̃1~ t !52v1E
0

t

~a1~ t8!1 ik0a0z̃~ t8!/2!dt8. ~24!

Equation~24! is approximate because it neglects the depen-
dence ofu1 on the longitudinal displacementz. The trans-
verse motion is a superposition of electron responses to each
driving term:

b15
iv0a0

V02v0
eiu01

k0~v122V0!a0z̃*

2~V022v01v1!
ei (2u02u1)2v1eiu1

3E
0

tS a~ t8!1
ik0a0

2
z~ t8! Ddt8. ~25!

The difference between Eq.~25! and the steady state Eq.~9!
is the treatment of the adiabatic turn-on of the probe field in
Eq. ~25!.

Substituting Eqs.~8! and ~25! into Eq. ~7! yields an
equation for the envelopez̃(t):

z̈̃22iDvz85c2k0v1a0* E
0

tS a1~ t8!1
ik0a0

2
z̃~ t8! Ddt8

1 ic2k1a1a0*
v0

Dv
2

c2k0
2ua0u2

4 S v112v0

Dv D z̃,

~26!

whereDv5v12v0 andV0 was replaced byv1 since reso-
nance is considered. For a given pulse form of the probe
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a1(t), the time evolution ofz̃(t) can be obtained from
Eq. ~26!. Differentiating both sides of Eq.~26! converts the
integral equation into a third-order ordinary differential
equation:

z̃-1Az̃91Bz̃81Cz̃5F~ t !, ~27!

where A522iDv, B5(c2k0
2ua0u2/4)(v112v0)/Dv, C

52 ic2k0
2v1ua0u2/2, and

F~ t !5c2k0v1a0* a1~ t !1 ic2k1~v0 /Dv!a0*
da1~ t !

dt
.

~28!

Note that Eq.~28! is a driving term determined by the enve-
lope of the probe.

A numerical solution to the adiabatic Eq.~27! is com-
pared in Fig. 1 to a single particle simulation. In the simula-
tion, we solved Eqs.~2! and~3! using a modified version of
the one-dimensionalOOPIC,13 for which a harmonic longitu-
dinal electric field (Ez52vp

2z) was implemented and a
single particle was loaded. The parameters used in Fig. 1 are
a050.05, a150.005, v050.8V0 , v151.0V0 , and B0

50.1 T. The front of the probe has an envelope given by
a1 exp(2(t2300l1 /c)2/(20l1 /c)2), where l152pc/v1 .
The probe amplitude at the entrance to the plasma is taken to
be constant fort.300l1 /c. The front of the pump has an
envelopea0 exp(2(t2120l1 /c)2/(40l1 /c)2). The delay of
the probe is such that plasma electrons reach steady-state
motion in the pump before the probe enters the plasma. Fig-
ure 1~a! shows the behavior ofu z̃(t)u predicted by theory and
by a non-relativistic simulation. Initiallyu z̃(t)u50; in the
presence of the pump and probe it grows until it has small
fluctuations about a steady-state valueu z̃u52a1 /k0a0

50.0043. Higher fluctuation is observed in a relativistic

simulation. The perpendicular speed of the electron is about
ub'u;0.2, as in Fig. 1~b!, from which the relativistic factor
is g51.02. The change in the relativistic cyclotron fre-
quency, V0 /g, is about 2%, which yields a comparable
change inu z̃u in the relativistic case. Figure 1~b! shows that
ub'u remains at the saturation level driven by the pump,
which implies that the resonant motion driven by the probe is
well suppressed. As expected,ub'u reaches a much higher
value in the absence of the pump, although the relativistic
effects naturally prohibits it from increasing indefinitely. The
fluctuation level inz can be lowered by making the probe
envelope more adiabatic.

III. SIMULATION RESULTS

In this section, we present some major results of EIT
simulations which include the numerical observation of EIT,
and a comparison of theory and simulations.

The code used in our simulations is a one-dimensional
version of theOOPIC.13 This is a fully relativistic electromag-
netic PIC code. The code is spatially one-dimensional and
follows three velocity components, making it a useful tool to
simulate transversely homogeneous electromagnetic prob-
lems. Diagnostics which separate the right- and left-moving
waves are implemented in this code: the amplitude of the
right-going wave is calculated asEright-going5Ex1cBy ,
whereE andB represent the electric field and the magnetic
induction andc is the speed of light. This procedure sepa-
rates the fields exactly in the vacuum. The technique of split-
ting the electromagnetic waves into left- and right-
propagating components has been used extensively for
studying the interaction between counter-propagating lasers
in plasmas.14–16

A. Plasma EIT

Transparency of the resonant probe is demonstrated in
Fig. 2. Simulation parameters are as follows: probe ampli-
tude a150.005, pump amplitudea050.05, v15V0 , v0

50.8V0 , and vp50.2V0 . The cyclotron frequency is
V0/2p53.031010 Hz. We measured the propagation of the
right-going wave envelope and the longitudinal wave inside
the plasma slab. The oscillation pattern of the envelope origi-
nates from the beat between the pump and probe. At earlier
times, in Fig. 2~a!, there is no beat on the right side of the
plasma. This implies that the probe has not been transmitted.
As the longitudinal wave is excited in the whole region of
the plasma@Fig. 2~d!#, transparency of the probe is observed
@Fig. 2~c!#.

To verify that the transparency of the probe wave is in-
duced by the interaction of the two waves inside the plasma,
we tried probe-onlyand pump-onlycases. The fast Fourier
transform~FFT! of the electric field of the electromagnetic
wave at the far end of plasma is shown for these cases in Fig.
2~e!. The signal is very noisy and there is no clear peak at
any frequency when the probe is launched without the pump.
For thepump-onlycase, there is a single peak at the pump
frequency. When the probe is launched along with the pump,
there are two additional peaks other than the pump: one is at

FIG. 1. ~a! Temporal evolution ofu z̃(t)u from theory~dotted line! given by
Eq. ~27!, non-relativistic single particle simulation~solid line!, and relativ-
istic simulation~dashed line!. ~b! Time trace ofub'u from a single particle
simulation with the same parameters when the electron is driven by the
pump and probe~solid line! and only by the probe~dashed line!. The pa-
rameters area050.05, v15V0 , v050.8V0 , and B050.1 T. The probe
envelope is 0.005 exp(2(t2300l1 /c)2/(20l1 /c)2).
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the probe frequency, indicating transparency, and the second
peak is at the lower sideband of the pump.

Another possible explanation of Fig. 2, other than EIT, is
that the signal measured on the right side of the plasma slab
originates from stimulated Raman scattering~SRS! of the
pump. To distinguish the EIT from SRS, we simulated a
probe slightly detuned from the cyclotron frequency. Figure
3~a! represents the FFT of transmitted signals which were
measured with changing plasma thicknesses. The position of
the measurement is separated by 8l15832pc/v1 from the
plasma–vacuum boundary where the waves escape. The
dominant peak appears at the probe frequency for a thin
plasma. As the plasma becomes thicker, another peak grows
at the cyclotron frequency, while the peak at the probe fre-
quency is reduced. The frequency spectrum of the longitudi-
nal wave measured at two different points inside the plasma
is in Fig. 3~b!. The dominant peak appears atv12v0 when
it is measured near the plasma–vacuum boundary of wave
incidence, while the main peak appears at the plasma fre-
quency (vp) when measured far from that boundary. It is
thought that, as the plasma becomes thicker, a wave at the
cyclotron frequency is amplified via the SRS process and a
resonant longitudinal wave withvp5V02v0 starts to domi-
nate the plasma response to the pump1probe, atv12v0 .
Accordingly, the transparency channel of the probe, which is
induced by the beat of the probe and pump, would be nar-
rowed down resulting in the blocking of the probe transmis-
sion. The thickness at which EIT is not observable in simu-
lations depends on the detuning and the plasma density. High
density and larger detuning require narrower plasmas. The

typical maximum thickness for detuningv1;0.99V0 and
vp;0.2V0 was approximately 20pc/V0 .

The application to accelerators relies on the generation
of a longitudinal electric field. An analytical expression can
be obtained from Eq.~10! and 4pJ52]E/]t:

Ẽz.
2mvp

2a1

ek0a0
. ~29!

Simulation results forẼz are summarized in Fig. 4, whereẼz

is plotted as a function ofa1 /a0 . The field average from the
simulation is calculated as a temporal mean value averaged
over more than 50 oscillation periods ofẼz(t) at the center
of plasma. The error bars in Fig. 4 are the maximum and
minimum peaks during the averaging interval. A linear fit to

FIG. 2. Simulation results showing transparency at cyclotron resonance.
The total wave energy density is shown at~a! t51.0631027 s, ~b! t
51.4031027 s. In ~b! and ~d! the corresponding longitudinal wave inside
the plasma slab is plotted. This shows the excitation of the plasma wave is
required for the transmission of the probe~see the text!. ~e! Fast Fourier
transform~FFT! of E(t) measured at the right-hand side of the plasma slab
for pump1probe ~solid line!, probe ~dotted line!, andpump~dashed line!.

FIG. 3. The transparency of a probe detuned from the resonance is degraded
as the plasma is made thicker.~a! FFT of the perpendicular electric field for
a plasma thickness 6lc ~dotted line!, 8lc ~solid line!, and 10.4lc ~dashed
line! as measured beyond the right boundary of the plasma.lc is defined as
2pc/V0 . ~b! FFT of the longitudinal electric field measured inside the
plasma slab near the left plasma–vacuum boundary~dashed line! and the
right boundary~solid line!. The wave is incident on the left boundary and
escapes through the right boundary.

FIG. 4. Measurement of the average peak longitudinal field forvp

50.2V0 ~squares! and vp50.25V0 ~circles!. The error bars measure the
variation of the peak field over the averaging time. The lines are from
Eq. ~29!.
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the data in Fig. 4 forvp50.25V0 is 4.13106, while the
theoretical slope based on Eq.~10! is 4.33106. For vp

50.2V0 , the fitting and the theory slopes are 2.8 and 2.7
3106, respectively. There is thus fine agreement between
theory and simulations. Though not plotted in Fig. 4, we also
examined the case ofvp50.3V0 and found that the simula-
tion longitudinal field was about 30% less than theoretical
value. This was not pursued in detail, but we speculate that
undesired SRS from the pump reduced performance of the
EIT at this higher plasma density.

B. Wiggler system

We now present simulation and theory of induced trans-
parency with the pump replaced by a magnetic wiggler. A
typical simulation in shown in Fig. 5, where EIT is evident.
The parameters area150.0001, kw52p/0.1 m21, B0

50.1 T, andBw /B050.8. The three snapshots were taken at
t53.231028 s, t55.231028 s, andt57.731028 s.

Notable in Fig. 5 is the compression of the probe in the
plasma, which occurs because its group velocity is much
lower than the speed of light in vacuum. Discussion of the
pulse compression in terms of photon number can be found
elsewhere.6,7 The probe stretches as it exits the plasma, but
the envelope suffers some distortion in the process.

A dispersion relation was obtained from the simulations
by measuring the wavenumber as a function of frequency.
We used a FFT to determine the probe wavenumber inside
the plasma. A plasma slab size large enough to contain more
than 30 wavelengths was used in the simulations, and a FFT
was then used to produce a well-defined wavenumber. The
result of such a FFT is seen in Fig. 6~a! for a right-hand
polarized wiggler and Fig. 6~b! for a left-hand polarized wig-
gler. Note that, other than the major peak at the probe wave-
number,k1 , there exist clear sub-peaks atk112kw . These
sub-peaks are driven by thee2 iu172ikwz component of the
transverse electron current in Eq.~21!.

Comparison of the dispersion relation inferred from the
simulations to the theoretical dispersion, given by Eq.~22!,
is presented in Fig. 7. The theoretical group velocity atv1

5V0 is, from Eq.~22!, 0.17c for Bw /B050.8 and 0.11c for
Bw /B050.6. The corresponding values defined by fitting the

simulation data are quite close. Overall, the theory and simu-
lation are in good agreement except for the case of a left-
hand polarized wiggler which haslw50.3 m. A possible
explanation for the difference in dispersion characteristics
between the left- and right-hand polarization of the wiggler
originates from the second term on the RHS of Eq.~21!. This
term was ignored in the derivation of the dispersion relation,
since it is generally not resonant with theeiu1 component of
the probe. However, at some specific values oflw , it may
come close to resonance with the probe or with a higher
harmonic. In such case the theory should be modified to
include the new term~this is currently under study!.

IV. THE WIGGLER EIT ACCELERATOR CONCEPT

The EIT interaction can be regarded as a method for
inducing a longitudinal electric field in the plasma. The
phase velocity of the longitudinal field is obtained by replac-
ing u0 in Eq. ~8! with kwz, giving vf5v1 /(kw6k1). Using

FIG. 5. Simulation of transparency in a system where the pump electromag-
netic wave is replaced by a wiggler field. The probe energy density is shown
at successive times, labeled 1, 2, and 3. Note the pulse compression in the
plasma and the oscillation pattern on the envelope of the transmission~la-
beled 3!. The pattern is from slight change in the probe from the circular to
the elliptical polarization.

FIG. 6. Spatial FFT of thex-polarized electric field inside the plasma for~a!
a right-hand wiggler and~b! a left-hand wiggler. The FFT was used to find
the numerical dispersion relation in Fig.~7!.

FIG. 7. Dispersion relation of probe in wiggler system for~a! Bw /B0

50.8 and~b! Bw /B050.6. Wiggler parameters are a right-hand polarized
wiggler with lw50.3 m ~circles!, left-hand withlw50.3 m ~inverted tri-
angles!, right-hand with lw50.1 m ~squares!, and left-hand withlw

50.1 m ~triangles!.
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a wiggler withlw50.5 cm, one findsbf50.35c, which is
very slow compared to the phase velocity of the longitudinal
field in other plasma-based advanced accelerators. For ex-
ample, in the laser-wakefield accelerator the phase velocity
of the longitudinal field equals the group velocity of the driv-
ing short laser pulse~or, roughly,vf /c512vp

2/2v2). Thus,
laser-wakefields are suitable for electron acceleration, but a
poor choice, given present technology, for ion acceleration.
In contrast, the slow phase velocity of the EIT accelerator
makes them an interesting choice for ions or other heavy
particles.

A remarkable characteristic of the wiggler-plasma sys-
tem is that the phase velocity of the longitudinal wave is
readily controllable. The amplitude of the longitudinal wave
does not depend onkw . Therefore, it is possible to control
vf , keeping the wave level fixed, by simply adjusting the
wiggler wavelength. The wavenumber of the probe inside the
plasma at resonance (v15vp5V0) is, from Eq. ~22!, k1

5v1 /&c. Then,

bf5
vf

c
5

1

1/&1lv /lw

, ~30!

wherelv is the wavelength of the probe in vacuum. An axial
magnetic field of 1 T corresponds to a probe frequencyv1

5V051.7631011 or wavelengthlv51.07 cm. As ions ac-
celerate it may be useful to change the phase velocity. Simu-
lations~not shown! confirm the result that the phase velocity
given by Eq.~30! is readily controlled by tapering the wig-
gler wavelength.

An important figure of merit for any accelerator is the
accelerating gradient. For the EIT accelerator, the gradient is
readily calculated using 4pJz52]Ez /]t and Eq.~20!:

Ẽz5a1

2mcvp
2

eVw
. ~31!

Recall that, in the case of the wiggler EIT,vp5V0 . Hence,
Eq. ~31! shows thatẼz is proportional to the product ofa1

and the ratio ofB0 to Bw for a given value ofB0 . It is natural
to plot, as seen in Fig. 8, the measuredẼz ~from simulations!
as a function ofa1B0 /Bw . Simulation results are shown for

B051 T, Bw50.5, 0.6, 0.7 T, andlw50.01 m. The axial
magnetic field used in Fig. 8 is higher than theB050.1 T
used is earlier simulations. This change is motivated by the
scaling ofẼz with B0 seen in Eq.~31!. A stronger axial field
and corresponding higher plasma frequency result in in-
creased accelerating gradients. The typical value we obtain
for the longitudinal field is of order 107 V/m, which is of
interest for an ion accelerator. For values ofa1B0 /Bw

,0.04, simulation results agree very well with Eq.~31!. The
linear theory fails asa1B0 /Bw increases because of the large
amplitude of the plasma wave, which is of orderdn/n;0.3
for a1B0 /Bw;0.05.

V. SUMMARY

We presented the theory and simulation of EIT in a mag-
netized plasma. The transparency of the resonant wave was
clearly seen in the one-dimensional PIC simulations of EIT
using an electromagnetic and wiggler pump. A dispersion
relation was derived including the influence of the upper and
lower sidebands of the pump. Analytic expressions for the
longitudinal plasma field and the transverse electron motion
were obtained. The analytic results for the dispersion relation
and the longitudinal field were shown to be in agreement
with PIC simulations. The wiggler-based system can be used
to excite accelerating fields with controllable phase velocity
and a gradient>20 MeV/m. Further detailed studies are un-
der way to determine the performance limits of an ion accel-
erator based on this concept.
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