32 research outputs found

    Penerapan Metode Pembelajaran Numbered Heads Together (Nht) Untuk Meningkatkan Motivasi Dan Hasil Belajar Kelarutan Dan Hasil Kali Kelarutan Kelas XI IPA 4 Sman 8 Surakarta Tahun Pelajaran 2012/2013

    Full text link
    Tujuan penelitian ini adalah untuk meningkatkan (1) motivasi belajar kelarutan dan hasil kali kelarutan dan (2) hasil belajar kelarutan dan hasil kali kelarutan melalui penerapan metode pembelajaran Numbered Heads Together (NHT). Penelitian ini merupakan penelitian tindakan kelas (Classroom Action Research) yang dilaksanakan dalam dua siklus dimana setiap siklusnya terdiri atas empat tahapan, yaitu perencanaan, pelaksanaan, pengamatan, dan refleksi. Subjek penelitian adalah siswa kelas XI IPA 4 SMAN 8 Surakarta Tahun Pelajaran 2012/2013. Pengumpulan data dilakukan melalui pengamatan, wawancara, kajian dokumen, angket, dan tes. Data yang diperoleh divalidasi menggunakan teknik triangulasi sumber dan dianalisis menggunakan analisis deskriptif kualitatif yang mengacu pada Miles dan Huberman. Hasil penelitian menunjukkan capaian motivasi belajar pada siklus I dan siklus II masing-masing mencapai 58,33% dan 79,17%. Hasil belajar yang diukur pada aspek kognitif dan afektif menunjukkan pada siklus I mencapai 29,17% dan 62,5% serta pada siklus II mencapai 70,83% dan 83,33%. Simpulan penelitian ini adalah penerapan metode pembelajaran Numbered Heads Together (NHT) mampu meningkatkan (1) motivasi belajar kelarutan dan hasil kali kelarutan dan (2) hasil belajar kelarutan dan hasil kali kelarutan kelas XI IPA 4 SMAN 8 Surakarta

    Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing

    Get PDF
    The accumulation and extrusion of Ca2+ in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca2+, respectively. The diffusive memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses and represent a major advancement in hardware implementation of neuromorphic functionalities

    Anatomy of Ag/Hafnia‐Based Selectors with 1010 Nonlinearity

    Get PDF
    Sneak path current is a significant remaining obstacle to the utilization of large crossbar arrays for non-volatile memories and other applications of memristors. A two-terminal selector device with an extremely large current-voltage nonlinearity and low leakage current could solve this problem. We present here a Ag/oxide-based threshold switching (TS) device with attractive features such as high current-voltage nonlinearity (~1010 ), steep turn-on slope (less than 1 mV/dec), low OFF-state leakage current (~10-14 A), fast turn ON/OFF speeds (108 cycles). The feasibility of using this selector with a typical memristor has been demonstrated by physically integrating them into a multilayered 1S1R cell. Structural analysis of the nanoscale crosspoint device suggests that elongation of a Ag nanoparticle under voltage bias followed by spontaneous reformation of a more spherical shape after power off is responsible for the observed threshold switching of the device. Such mechanism has been quantitatively verified by the Ag nanoparticle dynamics simulation based on thermal diffusion assisted by bipolar electrode effect and interfacial energy minimization

    A Water-in-Salt Electrolyte for Room-Temperature Fluoride-Ion Batteries Based on a Hydrophobic–Hydrophilic Salt

    No full text
    Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions. The new WIS electrolyte exhibits an electrochemical stability window of 2.47 V (2.08–4.55 V vs Li+/Li) with a room-temperature ionic conductivity of 30.6 mS/cm and a fluoride-ion transference number of 0.479, enabling reversible (de)fluoridation redox of lead and copper fluoride electrodes. The relationship between the salt property, the solvation structure, and the ionic transport behavior is jointly revealed by computational simulations and spectroscopic analysis

    Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle

    No full text
    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO<sub><i>x</i></sub> NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions

    Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    No full text
    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ∼5 nm sized Pt particles on the glass surface surrounding the electrode. The release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with a Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM)

    Hierarchical, Ultrathin Single-Crystal Nanowires of CdS Conveniently Produced in Laser-Induced Thermal Field

    No full text
    Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. Herein, we report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 s, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future

    Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by <i>In Situ</i> Environmental TEM

    No full text
    Simultaneously probing the electronic structure and morphology of materials at the nanometer or atomic scale while a chemical reaction proceeds is significant for understanding the underlying reaction mechanisms and optimizing a materials design. This is especially important in the study of nanoparticle catalysts, yet such experiments have rarely been achieved. Utilizing an environmental transmission electron microscope equipped with a differentially pumped gas cell, we are able to conduct nanoscopic imaging and electron energy loss spectroscopy <i>in situ</i> for cobalt catalysts under reaction conditions. Studies reveal quantitative correlation of the cobalt valence states with the particles’ nanoporous structures. The <i>in situ</i> experiments were performed on nanoporous cobalt particles coated with silica, while a 15 mTorr hydrogen environment was maintained at various temperatures (300–600 °C). When the nanoporous particles were reduced, the valence state changed from cobalt oxide to metallic cobalt and concurrent structural coarsening was observed. <i>In situ</i> mapping of the valence state and the corresponding nanoporous structures allows quantitative analysis necessary for understanding and improving the mass activity and lifetime of cobalt-based catalysts, for example, for Fischer–Tropsch synthesis that converts carbon monoxide and hydrogen into fuels, and uncovering the catalyst optimization mechanisms

    Visualization of Electrode–Electrolyte Interfaces in LiPF<sub>6</sub>/EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM

    No full text
    We report direct visualization of electrochemical lithiation and delithiation of Au anodes in a commercial LiPF<sub>6</sub>/EC/DEC electrolyte for lithium ion batteries using transmission electron microscopy (TEM). The inhomogeneous lithiation, lithium metal dendritic growth, electrolyte decomposition, and solid–electrolyte interface (SEI) formation are observed in situ. These results shed lights on strategies of improving electrode design for reducing short-circuit failure and improving the performance of lithium ion batteries
    corecore