19 research outputs found

    The growth of low-threading-dislocation-density GaAs buffer layers on Si substrates

    Get PDF
    Monolithic integration of III-V optoelectronic devices on Si platform is gaining momentum, since it enables advantages of low cost, less complexity and high yield for mass production. With the aim of achieving advances in monolthic integration, the challenges associated with lattice mismatch between III-V layers and Si substrates must be overcome, as a low density of threading dislocations is a prerequisite for the robustness of the integrated devices. In this paper, we have investigated and compare different tyeps of dislocation filter layers (DFLs) from InGaAs asymmetric step-graded buffer layer (ASG), InGaAs/GaAs strained-layer superlattices, and quaternary alloy InAlGaAs ASG, on the functionlity of reducing threading dislocation density (TDD) for GaAs buffer layers on Si. Compared to other DFLs, the sample with InAlGaAs ASG buffer layer shows the lowest average TDD value and roughness, while the deccrease of TDD in the sample with InAlGaAs ASG buffer layer can be understood in terms of the hardening agent role of aluminium in the InAlGaAs ASG. By further optimising the InAlGaAs ASG through thermal cyclic annealing, we successfully demonstrate a low surface TDD of 6.3±0.1×106 /cm2 for a 2 µm GaAs/InAlGaAs ASG buffer layer grown on Si. These results could provide a thin buffer design for monolthic integration of various III-V devices on Si substrates

    Droplet manipulation and horizontal growth of high-quality self-catalysed GaAsP nanowires

    Get PDF
    Self-catalyzed horizontal nanowires (NWs) can greatly simplify the CMOS integration processing compared with the regular vertical counterparts. However, self-catalyzed growth mode poses challenges in manipulating the droplets to produce single-crystalline horizontal NWs with a uniform diameter. Here, we demonstrated a novel method to manipulate the droplet through altering the droplet surface energy. Ga-droplet was successfully moved from top to sidewalls in GaAsP NWs by introducing Be and lowering the surface energy, and pinned at the tip despite the absence of planar defects. This can switch the growth direction, with a successful rate of 100 %, from vertical to horizontal through the assistance of few sparse twins. The produced NWs tend to be bounded by low energy facets, which leads to the self-catalysed growth of horizontal NWs with a greatly improved diameter uniformity along the axis. Besides, the lowered surface energy can effectively suppress the wurtzite nucleation, producing pure zinc blende single-crystalline horizontal NWs. This study establishes an essential step toward the efficient integration of NWs into CMOS compatible devices

    Growth of Pure Zinc-Blende GaAs(P) Core-Shell Nanowires with Highly Regular Morphology

    Get PDF
    The growth of self-catalyzed core–shell nanowires (NWs) is investigated systematically using GaAs(P) NWs. The defects in the core NW are found to be detrimental for the shell growth. These defects are effectively eliminated by introducing beryllium (Be) doping during the NW core growth and hence forming Be–Ga alloy droplets that can effectively suppress the WZ nucleation and facilitate the droplet consumption. Shells with pure zinc-blende crystal quality and highly regular morphology are successfully grown on the defect-free NW cores and demonstrated an enhancement of one order of magnitude for room-temperature emission compared to that of the defective shells. These results provide useful information on guiding the growth of high-quality shell, which can greatly enhance the NW device performance

    Kemnitz’ conjecture revisited

    Get PDF
    AbstractA conjecture of Kemnitz remained open for some 20 years: each sequence of 4n-3 lattice points in the plane has a subsequence of length n whose centroid is a lattice point. It was solved independently by Reiher and di Fiore in the autumn of 2003. A refined and more general version of Kemnitz’ conjecture is proved in this note. The main result is about sequences of lengths between 3p-2 and 4p-3 in the additive group of integer pairs modulo p, for the essential case of an odd prime p. We derive structural information related to their zero sums, implying a variant of the original conjecture for each of the lengths mentioned. The approach is combinatorial

    Effects of phosphorous and antimony doping on thin Ge layers grown on Si

    Get PDF
    Suppression of threading dislocations (TDs) in thin germanium (Ge) layers grown on silicon (Si) substrates has been critical for realizing high-performance Si-based optoelectronic and electronic devices. An advanced growth strategy is desired to minimize the TD density within a thin Ge buffer layer in Ge-on-Si systems. In this work, we investigate the impact of P dopants in 500-nm thin Ge layers, with doping concentrations from 1 to 50 × 1018 cm−3. The introduction of P dopants has efficiently promoted TD reduction, whose potential mechanism has been explored by comparing it to the well-established Sb-doped Ge-on-Si system. P and Sb dopants reveal different defect-suppression mechanisms in Ge-on-Si samples, inspiring a novel co-doping technique by exploiting the advantages of both dopants. The surface TDD of the Ge buffer has been further reduced by the co-doping technique to the order of 107 cm−2 with a thin Ge layer (of only 500 nm), which could provide a high-quality platform for high-performance Si-based semiconductor devices

    Initialization of nanowire or cluster growth critically controlled by the effective V/III ratio at the early nucleation stage

    Get PDF
    For self-catalyzed nanowires (NWs), reports on how the catalytic droplet initiates successful NW growth are still lacking, making it difficult to control the yield and often accompanying a high density of clusters. Here, we have performed a systematic study on this issue, which reveals that the effective V/III ratio at the initial growth stage is a critical factor that governs the NW growth yield. To initiate NW growth, the ratio should be high enough to allow the nucleation to extend to the entire contact area between the droplet and substrate, which can elevate the droplet off of the substrate, but it should not be too high in order to keep the droplet. This study also reveals that the cluster growth between NWs is also initiated from large droplets. This study provides a new angle from the growth condition to explain the cluster formation mechanism, which can guide high-yield NW growth

    Generation of Core–Sheath Polymer Nanofibers by Pressurised Gyration

    No full text
    The ability to generate core–sheath bicomponent polymer nanofibers in a single-step with scale-up possibilities is demonstrated using pressurised gyration manufacturing. This is the first time that nanofiber containing more than one polymer having a core–sheath configuration has been generated in this way. Water-soluble polymers polyethylene oxide (PEO) and polyvinyl pyrrolidone (PVP) are used as the core and sheath layers, respectively. Core–sheath nanofibers with a diameter in the range of 331 to 998 nm were spun using 15 wt % PEO and 15 wt % PVP polymer solutions. The forming parameters, working pressure and rotating speed, had a significant influence on the size, size distribution and the surface morphology of the nanofibers generated. Overall, fibre size decreased with increasing working pressure and rotating speed. The fibre size was normally distributed in all cases, with 0.2 MPa working pressure in particular showing narrower distribution. The fibre size distributions for 0.1 and 0.3 MPa working pressure were broader and a mean fibre size of 331 nm was obtained in the latter case. The fibre size was evenly distributed and narrower for rotating speeds of 2000 and 4000 RPMs. The distribution was broader for rotating speed of 6000 RPM with a mean value obtained at 430 nm. Continuous, smooth and bead-free fibre morphologies were obtained in each case. The fibre cross-section analysis using a focused ion beam machine showed a solid core surrounded by a sheath layer. Our findings demonstrate that the pressurised gyration could be used to produce core–sheath polymer nanofibers reliably and cost-effectively with scale-up possibilities (~4 kg h−1)

    Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds

    Get PDF
    Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel in vitro. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. Statement of significance Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration

    Thermally-driven formation of Ge quantum dots on self-catalysed thin GaAs nanowires

    No full text
    Embedding quantum dots (QDs) on nanowire (NW) sidewalls allows the integration of multi-layers of QDs into the active region of radial p-i-n junctions to greatly enhance light emission/absorption. However, the surface curvature makes the growth much more challenging compared with growths on thin-films, particularly on NWs with small diameters ({\O} <100 nm). Moreover, the {110} sidewall facets of self-catalyzed NWs favor two-dimensional growth (2D), with the realization of three-dimensional (3D) Stranski-Krastanow growth becoming extremely challenging. Here, we demonstrate thermally-driven formation of Ge dots on the {110} sidewalls facets of thin self-catalyzed NWs without using any surfactant or surface treatment. The 2D-3D transition of the pseudomorphic Ge layer grown on GaAs NWs is driven by energy minimization under high-temperature annealing. This method opens a new avenue to integrate QDs on NWs without any restriction on NW diameter or elastic strain, which can allow the formation of QDs in a wider range of materials systems where the growth of islands by traditional mechanisms is not possible, with benefits for novel NWQD-based optoelectronic devices.Comment:

    Thermally-driven formation method for growing (quantum) dots on sidewalls of self-catalysed thin nanowires

    No full text
    Embedding quantum dots (QDs) on nanowire (NW) sidewalls allows the integration of multi-layers of QDs into the active region of radial p–i–n junctions to greatly enhance light emission/absorption. However, the surface curvature makes the growth much more challenging compared with growths on thin-films, particularly on NWs with small diameters (Ø < 100 nm). Moreover, the {110} sidewall facets of self-catalyzed NWs favor two-dimensional growth, with the realization of three-dimensional Stranski–Krastanow growth becoming extremely challenging. Here, we have developed a novel thermally-driven QD growth method. The QD formation is driven by the system energy minimization when the pseudomorphic shell layer (made of QD material) is annealed under high-temperature, and thus without any restriction on the NW diameter or the participation of elastic strain. It has demonstrated that the lattice-matched Ge dots can be grown defect-freely in a controllable way on the sidewall facets of the thin (∼50 nm) self-catalyzed GaAs NWs without using any surfactant or surface treatment. This method opens a new avenue to integrate QDs on NWs, and can allow the formation of QDs in a wider range of materials systems where the growth by traditional mechanisms is not possible, with benefits for novel NWQD-based optoelectronic devices
    corecore