Discrete Mathematics 297 (2005) 196-201

DISCRETE MATHEMATICS

Note

Kemnitz' conjecture revisited

Svetoslav Savchev ${ }^{1}$, Fang Chen ${ }^{\text {a }}$
${ }^{\text {a }}$ Oxford College of Emory University, Oxford, GA 30054, USA

Received 13 December 2004; accepted 25 February 2005
Available online 28 July 2005

Abstract

A conjecture of Kemnitz remained open for some 20 years: each sequence of $4 n-3$ lattice points in the plane has a subsequence of length n whose centroid is a lattice point. It was solved independently by Reiher and di Fiore in the autumn of 2003. A refined and more general version of Kemnitz' conjecture is proved in this note. The main result is about sequences of lengths between $3 p-2$ and $4 p-3$ in the additive group of integer pairs modulo p, for the essential case of an odd prime p. We derive structural information related to their zero sums, implying a variant of the original conjecture for each of the lengths mentioned. The approach is combinatorial.

© 2005 Elsevier B.V. All rights reserved.

MSC: 11B50; 11P21

Keywords: Kemnitz’ conjecture; Zero-sums

1. Introduction

Let \mathbb{Z}_{n}^{2} denote the additive group of integer pairs considered modulo n. What is the minimum number $s(n, 2)$ with the property that each sequence of length $s(n, 2)$ in \mathbb{Z}_{n}^{2} has a subsequence of length n whose sum is the zero element of \mathbb{Z}_{n}^{2} ? The ($4 n-4$)-term sequence containing $n-1$ copies of each of the pairs $(0,0),(0,1),(1,0),(1,1)$ shows that $s(n, 2) \geqslant 4 n-3$.

[^0]Kemnitz [3] conjectured that $s(n, 2)=4 n-3$ for all n. His conjecture is multiplicative: if true for some two positive integers, it is also true for their product. This observation reduces the question to the essential case where n is a prime. Hence it suffices to establish $s(p, 2) \leqslant 4 p-3$ for all primes p. The first linear upper bound for $s(p, 2)$ was given by Alon and Dubiner [1], who proved that $s(p, 2) \leqslant 6 p-5$ for each prime p. Rónyai [5] showed that $s(p, 2) \leqslant 4 p-2$, implying that $s(p, 2)$ is either $4 p-2$ or $4 p-3$ for every prime p.

In October 2003, Reiher [4] announced that he had proved Kemnitz' conjecture. At the same time, in October 2003 again, we witnessed an informal meeting where di Fiore [2] presented an independent proof of his own. The crucial argument in the two proofs is the same; they differ only in their preparatory parts. One cannot help expressing high esteem for the work of Christian Reiher, an undergraduate student, and Carlos di Fiore, still a high-school student at that time. A couple of weeks later we obtained the version included below.

In the sequel, p will denote a prime and all congruences will be modulo p. Let σ be a sequence of elements in \mathbb{Z}_{p}^{2}. A subsequence of σ is called a zero subsequence or a zero sum if the sum of its terms is the zero element in \mathbb{Z}_{p}^{2}. The empty subsequence of σ is assumed to be a zero sum by definition. The zero subsequences of σ with length k will be called k-zero subsequences or k-zero sums. We denote their number by $N(k, \sigma)$. Most of the work on zero-sum problems in \mathbb{Z}_{p}^{2} is based on linear congruences involving the quantities $N(k, \sigma)$, modulo the prime p. Typical examples are the next two propositions.

Proposition 1. Let p be a prime and α a sequence of length $m \geqslant 2 p-1$ in \mathbb{Z}_{p}^{2}. Then

$$
N(0, \alpha)-N(1, \alpha)+\cdots+(-1)^{m} N(m, \alpha) \equiv 0 .
$$

Proposition 2. Let p be a prime and α a sequence of length at least $3 p-2$ in \mathbb{Z}_{p}^{2}. Then, for each $r \in\{0,1, \ldots, p-1\}$,

$$
N(r, \alpha)-N(r+p, \alpha)+N(r+2 p, \alpha)-\cdots \equiv 0 .
$$

Such congruence relations are obtained by algebraic means, for instance multilinear polynomials over finite fields and the Chevalley-Warning theorem.

However, algebraic considerations alone are probably not enough to prove Kemnitz' conjecture. The proof of Reiher and di Fiore is indirect and starts with easy-to-obtain or known congruence relations like the above. But it is a clever combinatorial argument that yields a contradiction.

Our intention here is not deriving yet another formal proof of Kemnitz' conjecture. We study a more subtle structural question about the role of the so-called short zero sums, ones of lengths less than p. It appears that in a "typical" sequence of length $4 p-3$ in \mathbb{Z}_{p}^{2} two short zero sums can be lumped together to produce a p-zero sum. Are short zero sums not sufficient to guarantee a p-zero sum in "most" cases? Our main theorem shows that reality is not as simple as that. Sequences of length $4 p-3$ in \mathbb{Z}_{p}^{2} differ significantly in the structure and organization of their p-zero sums. Still, their diversity can be described consistently
from the viewpoint of short zero sums, which is done in Corollary 7. In particular, the conclusions imply Kemnitz' conjecture, revealing a variety of structural reasons for it to be true. The results generalize naturally to all lengths between $3 p-2$ and $4 p-3$. As a consequence, a variant of Kemnitz' conjecture is obtained for each of these lengths.

The quantities $N(k, \sigma)$ cannot express the idea of combining together zero sums to produce longer ones. So we introduce more general combinatorial quantities as follows. Let σ be a sequence in \mathbb{Z}_{p}^{2}. If an ℓ-zero sum β of σ contains a k-zero sum α, we call the ordered pair (α, β) a (k, ℓ) - tower. The number of (k, ℓ)-towers in σ will be denoted by $T(k, \ell, \sigma)$. An ℓ-zero sum β in σ can be regarded as a $(0, \ell)$-tower, because it contains the empty subsequence which is a zero sum by definition. Hence $T(0, \ell, \sigma)=N(\ell, \sigma)$ for all ℓ, meaning that towers indeed generalize zero sums.

Our main result is a congruence relation involving the tower-type quantities $T(k, \ell, \sigma)$. Not surprisingly, the substantial part of the proof is combinatorial, although its starting point is a certain algebraic relation proved in Lemma 4. The following statement by Alon and Dubiner [1] is also needed.

Proposition 3. Each sequence with length $3 p$ and sum zero in \mathbb{Z}_{p}^{2} contains a subsequence with length p and sum zero.

It is worth noting that this simple assertion is present in all proofs known so far of upper bounds for $s(p, 2)$.

2. The main result

The core of this note is Theorem 5, which is a congruence relation for sequences of lengths between $3 p-2$ and $4 p-3$. Theorem 6 states explicitly the most interesting special case, where the length is $4 p-3$. To prepare for the proof, in the next lemma we establish a relation for zero subsums in a sequence of length $2 p$. In what follows, $\frac{1}{2}$ stands for the multiplicative inverse of 2 modulo a given odd prime p.

Lemma 4. Let p be an odd prime. Each sequence α of length $2 p$ and sum zero in \mathbb{Z}_{p}^{2} satisfies the relation

$$
N(0, \alpha)-N(1, \alpha)+\cdots+N(p-1, \alpha)-\frac{1}{2} N(p, \alpha) \equiv 0 .
$$

Proof. We apply Proposition 1 to the sequence α. For p odd and $m=2 p$, the relation takes the form

$$
N(0, \alpha)-N(1, \alpha)+\cdots+N(p-1, \alpha)-N(p, \alpha)+\cdots+N(2 p, \alpha) \equiv 0 .
$$

Since α has sum zero, taking complementary subsequences maps bijectively its k-zero sums onto its ($2 p-k$)-zero sums. Hence $N(k, \alpha)=N(2 p-k, \alpha)$ for all $k=0,1, \ldots, p-1$. It remains to notice that $N(k, \alpha)$ and $N(2 p-k, \alpha)$ enter the sum above with the same sign, because k and $2 p-k$ are of the same parity.

Theorem 5. Let p be an odd prime and $\ell \in\{1,2, \ldots, p\}$. Each sequence σ of length $3 p-3+\ell$ in \mathbb{Z}_{p}^{2} satisfies the relation

$$
\sum_{k=0}^{\ell-1}(-1)^{k}[T(k, p, \sigma)+T(k, 3 p, \sigma)]+\sum_{k=\ell}^{p-1}(-1)^{k} T(k, 2 p, \sigma)-\frac{1}{2} T(p, 2 p, \sigma) \equiv 1
$$

Proof. We first apply Lemma 4 to all ($2 p$)-zero subsequences of σ and sum up the resulting congruences. For a given k, as α ranges over the ($2 p$)-zero sums of σ, the sum of the respective $N(k, \alpha)$ counts each $(k, 2 p)$-tower of σ exactly once. Hence the summation gives

$$
\begin{equation*}
T(0,2 p, \sigma)-T(1,2 p, \sigma)+\cdots+T(p-1,2 p, \sigma)-\frac{1}{2} T(p, 2 p, \sigma) \equiv 0 . \tag{1}
\end{equation*}
$$

Furthermore, by Proposition 2 (with $r=0$), the original sequence σ satisfies the relation $\{N(0, \sigma)-N(p, \sigma)+N(2 p, \sigma)-N(3 p, \sigma) \equiv 0\}$. Since $N(0, \sigma)=1$, by the definitions this is the same as

$$
\begin{equation*}
T(0, p, \sigma)-T(0,2 p, \sigma)+T(0,3 p, \sigma) \equiv 1 \tag{2}
\end{equation*}
$$

Finally, another counting argument will show that the $T(k, 2 p, \sigma)$ in (1) can be replaced by $T(k, p, \sigma)+T(k, 3 p, \sigma)$ for all $k=1,2, \ldots, \ell-1$.

Fix a $k \in\{1, \ldots, \ell-1\}$ and consider any k-zero subsequence β of σ. Its complementary subsequence $\bar{\beta}$ has length $(3 p-3+\ell)-k$, which is at least $3 p-2$. Hence Proposition 2 can be applied to $\bar{\beta}$, and we apply it with $r=p-k$. Since the length of $\bar{\beta}$ is less than $4 p-k$, this gives

$$
N(p-k, \bar{\beta})-N(2 p-k, \bar{\beta})+N(3 p-k, \bar{\beta}) \equiv 0
$$

Let us sum this congruence over all k-zero sums β of σ. Adjoining to β the $(p-k)$-zero sums of its complement $\bar{\beta}$ produces all (k, p)-towers in σ with first coordinate β. Hence as β runs through the k-zero subsequences of σ, the sum of the respective $N(p-k, \bar{\beta})$ counts each (k, p)-tower in σ exactly once. Analogous conclusions hold for $2 p-k$ and $3 p-k$, therefore our second summation yields

$$
\begin{equation*}
T(k, p, \sigma)-T(k, 2 p, \sigma)+T(k, 3 p, \sigma) \equiv 0 \quad \text { for each } k=1, \ldots, \ell-1 . \tag{3}
\end{equation*}
$$

The desired relation in the theorem statement follows from (1) and (2) for $\ell=1$ and from (1)-(3) for $2 \leqslant \ell \leqslant p$.

The most important special case of Theorem 5 is naturally $\ell=p$.
Theorem 6. Let p be an odd prime. Each sequence σ of length $4 p-3$ in \mathbb{Z}_{p}^{2} satisfies the relation

$$
\begin{equation*}
\sum_{k=0}^{p-1}(-1)^{k}[T(k, p, \sigma)+T(k, 3 p, \sigma)]-\frac{1}{2} T(p, 2 p, \sigma) \equiv 1 \tag{4}
\end{equation*}
$$

3. Corollaries

We first derive conclusions from Theorem 6, about the p-zero sums in a sequence of length $4 p-3$ in \mathbb{Z}_{p}^{2}.

Corollary 7. Let p be an odd prime. Each sequence σ of length $4 p-3$ in \mathbb{Z}_{p}^{2} satisfies at least one of the following conditions:
(i) σ contains two disjoint nonempty zero subsequences whose lengths add up to p.
(ii) σ contains two disjoint zero subsequences of length p.
(iii) σ contains two disjoint zero subsequences, one of length p and one of length $2 p$.
(iv) $N(p, \sigma) \equiv 1$.

Proof. By Theorem 6, σ satisfies (4). Clearly at least one of the tower-type quantities on the left-hand side must be nonzero modulo p. If $T(k, p, \sigma) \not \equiv 0$ for some $k \in\{1,2, \ldots, p-1\}$, then (i) is true. If $T(p, 2 p, \sigma) \not \equiv 0$, then (ii) is true. If $T(k, 3 p, \sigma) \not \equiv 0$ for some $\{k \in\{0,1, \ldots, p-1\}\}$, then σ has a $3 p$-zero subsum τ. By Proposition $3, \tau$ contains a p-zero sum, which implies (iii). If all quantities mentioned so far are zero modulo p, then $T(0, p, \sigma) \equiv 1$, hence (iv) is true.

It is important to note that each of the alternatives (i)-(iv) can actually occur without the other three. For every condition among (i)-(iv), there is a sequence of length $4 p-3$ in \mathbb{Z}_{p}^{2} which satisfies this condition but fails the remaining three. Not all of these examples are evident, yet we do not include them here.
A look at the alternatives (i)-(iv) shows that our preliminary expectations about short zero sums were a bit too high. Sequences of length $4 p-3$ in \mathbb{Z}_{p}^{2} prove to be rather diverse with respect to their p-zero sums. However, Corollary 7 contains a description of this diversity, with one alternative the class of sequences where short zero sums do guarantee a p-zero sum. In particular, Kemnitz' conjecture follows directly, since each alternative among (i)-(iv) implies the existence of a p-zero subsequence.

Corollary 8 (Reiher-di Fiore). Let p be a prime number. Each sequence of length $4 p-3$ in \mathbb{Z}_{p}^{2} has a subsequence of length p and sum zero.

A comparison with length $4 p-2$ is in order here. Rónyai's result in [5] essentially states that each sequence σ of length $4 p-2$ in \mathbb{Z}_{p}^{2} (for p odd) satisfies $N(p, \sigma)-N(3 p, \sigma) \equiv 2$. Hence at least one of $N(p, \sigma)$ and $N(3 p, \sigma)$ is nonzero modulo p, so σ must have a p-zero sum by Proposition 3. The picture is considerably more complicated for length $4 p-3$, as Corollary 7 suggests. No linear congruence involving only $N(p, \sigma)$ and $N(3 p, \sigma)$ seems to be available. The existence of a p-zero sum is due to a whole range of reasons, mostly of structural nature.

In view of Theorem 5, Corollary 7 generalizes to all lengths between $3 p-2$ and $4 p-3$.

Corollary 9. Let p be an odd prime and $\ell \in\{1,2, \ldots, p\}$. Each sequence σ of length $3 p-3+\ell$ in \mathbb{Z}_{p}^{2} satisfies at least one of the following conditions:
(i) For some $k \in\{1, \ldots, \ell-1\}$, σ has a pair of disjoint zero subsequences, one of length k and one of length $p-k$.
(ii) For some $k \in\{\ell, \ldots, p\}$, σ has a pair of disjoint zero subsequences, one of length k and one of length $2 p-k$.
(iii) σ contains two disjoint zero subsequences, one of length p and one of length $2 p$.
(iv) $N(p, \sigma) \equiv 1$.

The proof is completely analogous to the one of Corollary 7.
Of course, a sequence in \mathbb{Z}_{p}^{2} of length less than $4 p-3$ may not have p-zero sums. However, by Corollary 9 this can be the case only if condition (ii) holds true, with $k \neq p$, while the other three conditions fail. Thus we obtain a variant of Kemnitz' conjecture for each length between $3 p-2$ and $4 p-3$.

Corollary 10. Let p be an odd prime and $\ell \in\{1,2, \ldots, p\}$. At least one of the following holds for each sequence σ of length $3 p-3+\ell$ in \mathbb{Z}_{p}^{2} :
(i) σ has a zero subsequence of length p.
(ii) For some $k \in\{\ell, \ldots, p-1\}$, σ has a pair of disjoint zero subsequences, one of length k and one of length $2 p-k$.

The larger the ℓ in Corollary 10, the more interesting the conclusion. We state separately the case $\ell=p-1$ corresponding to the critical length $4 p-4$.

Corollary 11. Let p be an odd prime. Each sequence of length $4 p-4$ in \mathbb{Z}_{p}^{2} either contains a zero subsequence of length p or a pair of disjoint zero subsequences, one of length $p-1$ and one of length $p+1$.

In conclusion, we do not find a way to deduce Corollaries 7 and 9-11 from the theorem of Reiher and di Fiore, nor to obtain them directly (without Theorem 5) by other means known to us.

References

[1] N. Alon, M. Dubiner, Zero-sum sets of prescribed size, Combinatorics, Paul Erdős is Eighty, János Bolyai Mathematical Society, Budapest, 1993, pp. 33-50.
[2] C. di Fiore, October 2003, personal communication.
[3] A. Kemnitz, On a lattice point problem, Ars Combin. 16b (1983) 151-160.
[4] C. Reiher, On Kemnitz' conjecture concerning lattice-points in the plane, preprint.
[5] L. Rónyai, On a conjecture of Kemnitz, Combinatorica 20 (4) (2000) 569-573.

[^0]: E-mail addresses: svetsavchev@yahoo.com (S. Savchev), fchen2@learnlink.emory.edu (F. Chen).
 ${ }^{1}$ No current affiliation.

