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Abstract

A conjecture of Kemnitz remained open for some 20 years: each sequence of 4n−3 lattice points in
theplanehasa subsequenceof lengthnwhosecentroid is a lattice point. It was solved independently by
Reiher and di Fiore in the autumn of 2003.A refined andmore general version of Kemnitz’ conjecture
is proved in this note. The main result is about sequences of lengths between 3p −2 and 4p −3 in the
additive group of integer pairs modulop, for the essential case of an odd primep.We derive structural
information related to their zero sums, implying a variant of the original conjecture for each of the
lengths mentioned. The approach is combinatorial.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let Z2
n denote the additive group of integer pairs considered modulon. What is the

minimum numbers(n,2) with the property that each sequence of lengths(n,2) in Z2
n

has a subsequence of lengthn whose sum is the zero element ofZ2
n? The(4n − 4)-term

sequence containingn−1 copies of each of the pairs(0,0), (0,1), (1,0), (1,1) shows that
s(n,2)�4n − 3.
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Kemnitz[3] conjectured thats(n,2) = 4n − 3 for all n. His conjecture is multiplicative:
if true for some two positive integers, it is also true for their product. This observation
reduces the question to the essential case wheren is a prime. Hence it suffices to establish
s(p,2)�4p − 3 for all primesp. The first linear upper bound fors(p,2) was given by
Alon and Dubiner[1], who proved thats(p,2)�6p − 5 for each primep. Rónyai [5]
showed thats(p,2)�4p − 2, implying thats(p,2) is either 4p − 2 or 4p − 3 for every
primep.
In October 2003, Reiher[4] announced that he had proved Kemnitz’ conjecture. At the

same time, in October 2003 again, we witnessed an informal meeting where di Fiore[2]
presented an independent proof of his own. The crucial argument in the two proofs is the
same; they differ only in their preparatory parts. One cannot help expressing high esteem
for the work of Christian Reiher, an undergraduate student, and Carlos di Fiore, still a
high-school student at that time. A couple of weeks later we obtained the version included
below.
In the sequel,p will denote a prime and all congruences will be modulop. Let � be a

sequence of elements inZ2
p. A subsequence of� is called azero subsequenceor azero sum

if the sum of its terms is the zero element inZ2
p. The empty subsequence of� is assumed to

be a zero sum by definition. The zero subsequences of� with lengthkwill be calledk-zero
subsequencesor k-zero sums. We denote their number byN(k,�). Most of the work on
zero-sum problems inZ2

p is based on linear congruences involving the quantitiesN(k,�),
modulo the primep. Typical examples are the next two propositions.

Proposition 1. Let p be a prime and� a sequence of lengthm�2p − 1 in Z2
p. Then

N(0, �) − N(1, �) + · · · + (−1)mN(m, �) ≡ 0.

Proposition 2. Let p be a prime and� a sequence of length at least3p − 2 in Z2
p. Then,

for eachr ∈ {0,1, . . . , p − 1},

N(r, �) − N(r + p, �) + N(r + 2p, �) − · · · ≡ 0.

Such congruence relations are obtained by algebraic means, for instance multilinear
polynomials over finite fields and the Chevalley–Warning theorem.
However, algebraic considerations alone are probably not enough to prove Kemnitz’

conjecture. The proof of Reiher and di Fiore is indirect and starts with easy-to-obtain or
known congruence relations like the above. But it is a clever combinatorial argument that
yields a contradiction.
Our intention here is not deriving yet another formal proof of Kemnitz’ conjecture. We

study a more subtle structural question about the role of the so-calledshortzero sums, ones
of lengths less thanp. It appears that in a “typical” sequence of length 4p − 3 in Z2

p two
short zero sums can be lumped together to produce ap-zero sum. Are short zero sums not
sufficient to guarantee ap-zero sum in “most” cases? Our main theorem shows that reality
is not as simple as that. Sequences of length 4p−3 inZ2

p differ significantly in the structure
and organization of theirp-zero sums. Still, their diversity can be described consistently
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from the viewpoint of short zero sums, which is done in Corollary 7. In particular, the
conclusions imply Kemnitz’ conjecture, revealing a variety of structural reasons for it to
be true. The results generalize naturally to all lengths between 3p − 2 and 4p − 3. As a
consequence, a variant of Kemnitz’ conjecture is obtained for each of these lengths.
The quantitiesN(k,�) cannot express the idea of combining together zero sums to

produce longer ones. So we introduce more general combinatorial quantities as follows.
Let � be a sequence inZ2

p. If an �-zero sum� of � contains ak-zero sum�, we call the
ordered pair(�,�) a (k, �)- tower. The number of(k, �)-towers in� will be denoted by
T (k, �,�). An �-zero sum� in � can be regarded as a(0, �)-tower, because it contains the
empty subsequence which is a zero sum by definition. HenceT (0, �,�) = N(�,�) for all
�, meaning that towers indeed generalize zero sums.
Our main result is a congruence relation involving the tower-type quantitiesT (k, �,�).

Not surprisingly, the substantial part of the proof is combinatorial, although its starting point
is a certain algebraic relation proved in Lemma 4. The following statement by Alon and
Dubiner[1] is also needed.

Proposition 3. Each sequence with length3p and sum zero inZ2
p contains a subsequence

with length p and sum zero.

It is worth noting that this simple assertion is present in all proofs known so far of upper
bounds fors(p,2).

2. The main result

The core of this note is Theorem 5, which is a congruence relation for sequences of
lengths between 3p−2 and 4p−3. Theorem 6 states explicitly the most interesting special
case, where the length is 4p − 3. To prepare for the proof, in the next lemma we establish
a relation for zero subsums in a sequence of length 2p. In what follows, 12 stands for the
multiplicative inverse of 2 modulo a given odd primep.

Lemma 4. Let p be an odd prime. Each sequence� of length2p and sum zero inZ2
p

satisfies the relation

N(0, �) − N(1, �) + · · · + N(p − 1, �) − 1
2 N(p, �) ≡ 0.

Proof. We apply Proposition 1 to the sequence�. Forp odd andm = 2p, the relation takes
the form

N(0, �) − N(1, �) + · · · + N(p − 1, �) − N(p, �) + · · · + N(2p, �) ≡ 0.

Since� has sum zero, taking complementary subsequencesmaps bijectively itsk-zero sums
onto its(2p − k)-zero sums. HenceN(k, �) = N(2p − k, �) for all k = 0,1, . . . , p − 1. It
remains to notice thatN(k, �) andN(2p − k, �) enter the sum above with the same sign,
becausek and 2p − k are of the same parity.�
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Theorem 5. Let p be an odd prime and� ∈ {1,2, . . . , p}. Each sequence� of length
3p − 3+ � in Z2

p satisfies the relation

�−1∑

k=0

(−1)k[T (k, p,�)+T (k,3p,�)]+
p−1∑

k=�

(−1)kT (k,2p,�)− 1

2
T (p,2p,�) ≡ 1.

Proof. We first apply Lemma 4 to all(2p)-zero subsequences of� and sum up the resulting
congruences. For a givenk, as� ranges over the(2p)-zero sums of�, the sum of the
respectiveN(k, �) counts each(k,2p)-tower of � exactly once. Hence the summation
gives

T (0,2p,�) − T (1,2p,�) + · · · + T (p − 1,2p,�) − 1
2T (p,2p,�) ≡ 0. (1)

Furthermore, by Proposition 2 (withr = 0), the original sequence� satisfies the relation
{N(0,�) − N(p,�) + N(2p,�) − N(3p,�) ≡ 0}. SinceN(0,�) = 1, by the definitions
this is the same as

T (0, p,�) − T (0,2p,�) + T (0,3p,�) ≡ 1. (2)

Finally, another counting argument will show that theT (k,2p,�) in (1) can be replaced by
T (k, p,�) + T (k,3p,�) for all k = 1,2, . . . , � − 1.
Fix ak ∈ {1, . . . , �−1} and consider anyk-zero subsequence� of �. Its complementary

subsequence� has length(3p − 3+ �) − k, which is at least 3p − 2. Hence Proposition 2
can be applied to�, and we apply it withr =p−k. Since the length of� is less than 4p−k,
this gives

N(p − k,�) − N(2p − k,�) + N(3p − k,�) ≡ 0.

Let us sum this congruence over allk-zero sums� of �. Adjoining to� the (p − k)-zero
sums of its complement� produces all(k, p)-towers in� with first coordinate�. Hence as
� runs through thek-zero subsequences of�, the sum of the respectiveN(p − k,�) counts
each(k, p)-tower in� exactly once. Analogous conclusions hold for 2p − k and 3p − k,
therefore our second summation yields

T (k, p,�) − T (k,2p,�) + T (k,3p,�) ≡ 0 for eachk = 1, . . . , � − 1. (3)

The desired relation in the theorem statement follows from (1) and (2) for� = 1 and from
(1)–(3) for 2���p. �

The most important special case of Theorem 5 is naturally� = p.

Theorem 6. Let p be an odd prime. Each sequence� of length4p − 3 in Z2
p satisfies the

relation

p−1∑

k=0

(−1)k[T (k, p,�) + T (k,3p,�)] − 1

2
T (p,2p,�) ≡ 1. (4)
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3. Corollaries

We first derive conclusions from Theorem 6, about thep-zero sums in a sequence of
length 4p − 3 in Z2

p.

Corollary 7. Let p be an odd prime. Each sequence� of length4p − 3 in Z2
p satisfies at

least one of the following conditions:

(i) � contains two disjoint nonempty zero subsequences whose lengths add up to p.
(ii) � contains two disjoint zero subsequences of length p.
(iii) � contains two disjoint zero subsequences, one of length p and one of length2p.
(iv) N(p,�) ≡ 1.

Proof. ByTheorem 6,� satisfies (4). Clearly at least one of the tower-type quantities on the
left-hand sidemust be nonzero modulop. If T (k, p,�) /≡ 0 for somek ∈ {1,2, . . . , p−1},
then (i) is true. IfT (p,2p,�) /≡ 0, then (ii) is true. IfT (k,3p,�) /≡ 0 for some
{k ∈ {0,1, . . . , p − 1}}, then� has a 3p-zero subsum�. By Proposition 3,� contains
ap-zero sum, which implies (iii). If all quantities mentioned so far are zero modulop, then
T (0, p,�) ≡ 1, hence (iv) is true. �

It is important to note that each of the alternatives (i)–(iv) can actually occur without the
other three. For every condition among (i)–(iv), there is a sequence of length 4p − 3 inZ2

p

which satisfies this condition but fails the remaining three. Not all of these examples are
evident, yet we do not include them here.
A look at the alternatives (i)–(iv) shows that our preliminary expectations about short

zero sums were a bit too high. Sequences of length 4p − 3 inZ2
p prove to be rather diverse

with respect to theirp-zero sums. However, Corollary 7 contains a description of this
diversity, with one alternative the class of sequences where short zero sums do guarantee
a p-zero sum. In particular, Kemnitz’ conjecture follows directly, since each alternative
among (i)–(iv) implies the existence of ap-zero subsequence.

Corollary 8 (Reiher–di Fiore). Let p be a prime number. Each sequence of length4p − 3
in Z2

p has a subsequence of length p and sum zero.

A comparison with length 4p −2 is in order here. Rónyai’s result in[5] essentially states
that each sequence� of length 4p − 2 inZ2

p (for p odd) satisfiesN(p,�) − N(3p,�) ≡ 2.
Hence at least one ofN(p,�) andN(3p,�) is nonzero modulop, so� must have ap-zero
sum by Proposition 3. The picture is considerably more complicated for length 4p − 3, as
Corollary 7 suggests. No linear congruence involving onlyN(p,�) andN(3p,�) seems to
be available. The existence of ap-zero sum is due to a whole range of reasons, mostly of
structural nature.
In view of Theorem 5, Corollary 7 generalizes to all lengths between 3p − 2 and

4p − 3.
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Corollary 9. Let p be an odd prime and� ∈ {1,2, . . . , p}. Each sequence� of length
3p − 3+ � in Z2

p satisfies at least one of the following conditions:

(i) For somek ∈ {1, . . . , � − 1}, � has a pair of disjoint zero subsequences, one of length
k and one of lengthp − k.

(ii) For somek ∈ {�, . . . , p}, � has a pair of disjoint zero subsequences, one of length k
and one of length2p − k.

(iii) � contains two disjoint zero subsequences, one of length p and one of length2p.
(iv) N(p,�) ≡ 1.

The proof is completely analogous to the one of Corollary 7.
Of course, a sequence inZ2

p of length less than 4p − 3 may not havep-zero sums.
However, by Corollary 9 this can be the case only if condition (ii) holds true, withk �= p,
while the other three conditions fail. Thus we obtain a variant of Kemnitz’ conjecture for
each length between 3p − 2 and 4p − 3.

Corollary 10. Let p be an odd prime and� ∈ {1,2, . . . , p}. At least one of the following
holds for each sequence� of length3p − 3+ � in Z2

p:

(i) � has a zero subsequence of length p.
(ii) For somek ∈ {�, . . . , p −1}, � has a pair of disjoint zero subsequences, one of length

k and one of length2p − k.

The larger the� in Corollary 10, the more interesting the conclusion.We state separately
the case� = p − 1 corresponding to the critical length 4p − 4.

Corollary 11. Let p be an odd prime. Each sequence of length4p−4 inZ2
p either contains

a zero subsequence of length p or a pair of disjoint zero subsequences, one of lengthp − 1
and one of lengthp + 1.

In conclusion, we do not find a way to deduce Corollaries 7 and 9–11 from the theorem
of Reiher and di Fiore, nor to obtain them directly (without Theorem 5) by other means
known to us.
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