57 research outputs found
Recommended from our members
Molecular Landscape of Acute Myeloid Leukemia: Prognostic and Therapeutic Implications
Funder: University of CambridgeAbstract: Purpose of Review: The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. Recent Findings: Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. Summary: The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field
Recommended from our members
Molecular Landscape of Acute Myeloid Leukemia: Prognostic and Therapeutic Implications
Funder: University of CambridgeAbstract: Purpose of Review: The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. Recent Findings: Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. Summary: The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field
KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements
Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-CoA to lysine residues of histones and play a central role in transcriptional regulation in diverse biological processes. Dysregulation of HAT activity can lead to human diseases including developmental disorders and cancer. Through genome-wide CRISPR-Cas9 screens, we identified several HATs of the MYST family as fitness genes for acute myeloid leukemia (AML). Here we investigate the essentiality of lysine acetyltransferase KAT7 in AMLs driven by the MLL-X gene fusions. We found that KAT7 loss leads to a rapid and complete loss of both H3K14ac and H4K12ac marks, in association with reduced proliferation, increased apoptosis, and differentiation of AML cells. Acetyltransferase activity of KAT7 is essential for the proliferation of these cells. Mechanistically, our data propose that acetylated histones provide a platform for the recruitment of MLL-fusion-associated adaptor proteins such as BRD4 and AF4 to gene promoters. Upon KAT7 loss, these factors together with RNA polymerase II rapidly dissociate from several MLL-fusion target genes that are essential for AML cell proliferation, including MEIS1, PBX3, and SENP6. Our findings reveal that KAT7 is a plausible therapeutic target for this poor prognosis AML subtype
Recommended from our members
Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML
Abstract: Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets
Core outcome set measurement for future clinical trials in acute myeloid leukemia: the HARMONY study protocol using a multi-stakeholder consensus-based Delphi process and a final consensus meeting
Abstract: Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and has an unacceptably low cure rate. In recent years, a number of new treatment strategies and compounds were developed for the treatment of AML. There were several randomized controlled clinical trials with the objective to improve patients’ management and patients’ outcome in AML. Unfortunately, these trials are not always directly comparable since they do not measure the same outcomes, and currently there are no core outcome sets that can be used to guide outcome selection and harmonization in this disease area. The HARMONY (Healthcare Alliance for Resourceful Medicine Offensive against Neoplasms in Hematology) Alliance is a public-private European network established in 2017 and currently includes 53 partners and 32 associated members from 22 countries. Amongst many other goals of the HARMONY Alliance, Work Package 2 focuses on defining outcomes that are relevant to each hematological malignancy. Accordingly, this pilot study will be performed to define a core outcome set in AML. Methods: The pilot study will use a three-round Delphi survey and a final consensus meeting to define a core outcome set. Participants will be recruited from different stakeholder groups, including patients, clinicians, regulators and members of the European Federation of Pharmaceutical Industries and Associations. At the pre-Delphi stage, a literature research was conducted followed by several semi-structured interviews of clinical public and private key opinion leaders. Subsequently, the preliminary outcome list was discussed in several multi-stakeholder face-to-face meetings. The Delphi survey will reduce the preliminary outcome list to essential core outcomes. After completion of the last Delphi round, a final face-to-face meeting is planned to achieve consensus about the core outcome set in AML. Discussion: As part of the HARMONY Alliance, the pilot Delphi aims to define a core outcome set in AML on the basis of a multi-stakeholder consensus. Such a core outcome set will help to allow consistent comparison of future clinical trials and real-world evidence research and ensures that appropriate outcomes valued by a range of stakeholders are measured within future trials
Recommended from our members
Genetic modification of primary human B cells to model high-grade lymphoma
Abstract: Sequencing studies of diffuse large B cell lymphoma (DLBCL) have identified hundreds of recurrently altered genes. However, it remains largely unknown whether and how these mutations may contribute to lymphomagenesis, either individually or in combination. Existing strategies to address this problem predominantly utilize cell lines, which are limited by their initial characteristics and subsequent adaptions to prolonged in vitro culture. Here, we describe a co-culture system that enables the ex vivo expansion and viral transduction of primary human germinal center B cells. Incorporation of CRISPR/Cas9 technology enables high-throughput functional interrogation of genes recurrently mutated in DLBCL. Using a backbone of BCL2 with either BCL6 or MYC, we identify co-operating genetic alterations that promote growth or even full transformation into synthetically engineered DLBCL models. The resulting tumors can be expanded and sequentially transplanted in vivo, providing a scalable platform to test putative cancer genes and to create mutation-directed, bespoke lymphoma models
Genetic modification of primary human B cells to model high-grade lymphoma
Sequencing studies of diffuse large B cell lymphoma (DLBCL) have identified hundreds of recurrently altered genes. However, it remains largely unknown whether and how these mutations may contribute to lymphomagenesis, either individually or in combination. Existing strategies to address this problem predominantly utilize cell lines, which are limited by their initial characteristics and subsequent adaptions to prolonged in vitro culture. Here, we describe a co-culture system that enables the ex vivo expansion and viral transduction of primary human germinal center B cells. Incorporation of CRISPR/Cas9 technology enables high-throughput functional interrogation of genes recurrently mutated in DLBCL. Using a backbone of BCL2 with either BCL6 or MYC, we identify co-operating genetic alterations that promote growth or even full transformation into synthetically engineered DLBCL models. The resulting tumors can be expanded and sequentially transplanted in vivo, providing a scalable platform to test putative cancer genes and to create mutation-directed, bespoke lymphoma models
Recommended from our members
Research, Monitoring, and Evaluation of Fish and Wildlife Restoration Projects in the Columbia River Basin: Lessons Learned and Suggestions for Large- Scale Monitoring Programs
El ano 2006 representa en dos sentidos una fecha critica para la cuenca del Rio Columbia y para los esfuerzos de recuperacion del salmon y la trucha arcoiris en la region Pacifico Noroeste: el 25 aniversario de la creacion del Consejo para la Conservacion y Poder del Noroeste y el 10 degree aniversario de la enmienda al Acto de Poder del Noroeste, que formaliza el arbitraje cientifico del Programa de Pesca y Vida Silvestre de dicho consejo, asi como de sus proyectos individuales. Durante la ultima decada, los autores del presente trabajo fungieron como arbitros de estos proyectos. Los esfuerzos de recuperacion en el Rio Columbia constituyen una iniciativa muy importante en cuanto a la rehabilitacion de pesquerias y ecosistemas. En este articulo se examinan algunas lecciones aprendidas durante el proceso de revision de investigacion, monitoreo y evaluacion de proyectos y su repercusion sobre el avance del conocimiento (manejo adaptativo) en el Programa de Pesca y Vida Silvestre de la Cuenca del Rio Columbia, uno de los programas de recuperacion mas ambiciosos y de mas largo plazo en los Estados Unidos de Norteamerica.The year 2006 marked two milestones in the Columbia River Basin and the Pacific Northwest region's efforts to rebuild its once great salmon and steelhead runs -- the 25th anniversary of the creation of the Northwest Power and Conservation Council and the 10th anniversary of an amendment to the Northwest Power Act that formalized scientific peer review of the council's Fish and Wildlife Program and its varied individual projects. The authors of this article served as peer reviewers in the last decade. Restoration efforts in the Columbia River constitute a massive long-term attempt at fisheries and ecosystem restoration. In this article we examine some of the lessons we learned in reviewing the research, monitoring, and evaluation efforts of projects and their effects on advancing knowledge (i.e., adaptive management) in the Columbia River Basin Fish and Wildlife Program, one of the most ambitious and expensive long-term ecological restoration programs in the United States.Keywords: Restoration, Monitoring, Fishery Management, Columbia River BasinKeywords: Restoration, Monitoring, Fishery Management, Columbia River Basi
- …