24,658 research outputs found
Measuring consumer detriment under conditions of imperfect information
Copyright @ 2001 Office of Fair Tradin
Interactions between toothbrush and toothpaste particles during simulated abrasive cleaning
Most people clean their teeth using toothpaste, consisting of abrasive particles in a carrier fluid, and a filament based toothbrush to remove plaque and stain. In order to optimise cleaning efficiency it is important to understand how toothbrush filaments, abrasive particles and fluid interact in a tooth cleaning contact.
Work has been carried out to visualise, simulate, and model the processes in teeth cleaning. Laboratory cleaning contacts were created between a toothbrush and a transparent surface. Video and short duration flash photography were used to study the processes by which a toothbrush traps abrasive particles, loads them against the counterface, and removes material. Small abrasive particles tend to be trapped at the contact between the filament tip and the counterface, whilst larger particles are trapped by clumps of filaments or at the contact with the side of a bent filament.
Measurements of brush friction force were recorded during cleaning for a range of operating conditions. The presence of abrasive particles in the cleaning mixture increased the coefficient of friction, but the absolute particle concentration showed a lesser effect. It is surmised that only a few particles carry any load and cause any abrasion; increasing the particle concentration does not directly increase the number of load bearing particles.
Abrasive scratch tests were also carried out, using PMMA as a wearing substrate. The scratches produced during these tests were studied. The microscopy images were used to deduce how the filaments deflect and drag, and how particles are trapped by filaments and scratch the surface. Again, it was observed that few of the brush filaments loaded particles to produce scratches, and that when a filament changes direction of travel the trapped particle is lost.
Results of these studies were used to develop both qualitative and quantitative models of the process by which material is removed in teeth cleaning. The quantitative model contains, by necessity, several empirical factors, but nonetheless predictions compare well with in vitro wear results from the literature. The results were also used to draw some broad conclusions on appropriate brushing techniques for optimum tooth cleaning
Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate
Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at
high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new
compact continuum sources. Three of the new sources are coincident with
previously-identified water masers. Together with the previously-known sources,
these data bring the number of likely protocluster members to 25 for a
protostellar density of ~700 pc^-3. Our preliminary measurement of the
Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a
uniform volume distribution. All of the (nine) sources with detections at
multiple frequencies have SEDs consistent with dust emission, and two (SMA1b
and SMA4) also have long wavelength emission consistent with a central
hypercompact HII region. Thermal spectral line emission, including CH3CN, is
detected in six sources: LTE model fitting of CH3CN(J=12-11) yields
temperatures of 72-373K, confirming the presence of multiple hot cores. The
fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean
square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for
the protocluster. From analysis of a wide range of hot core molecules, the
kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of
diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1
degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a
projected separation of 0.45" (590AU; SMA1d), which shows no evidence of
spectral line emission, is also confirmed. Finally, we detect one 218.440GHz
and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical
Journal. Version 2: Keywords updated, and three "in press" citations updated
to journal reference. Version 3: corrected the error in the quantum numbers
of the 218 GHz methanol transition in the text and in Table 8. For a PDF
version with full-resolution figures, see
http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd
Partial discharge testing of defective three-phase PILC cable under rated conditions
The ability to accurately monitor the health of power distribution plant is a very attractive prospect for utility companies. This capability would provide a system that engineers could use to assess the real-time state of the network. Analysis of the data produced could allow for more informed decisions to be made in the areas of asset replacement and maintenance scheduling amongst others. It is widely accepted that partial discharge activity is linked with the electrical ageing/degradation of high voltage equipment. Work at Southampton is focused on obtaining a better understanding of the characteristics and trends of partial discharge events associated with medium voltage cables under, 'real life' conditions. An experiment has been developed that allows for service conditions to be applied to defective paper insulated lead covered cable samples. The samples under investigation were exposed to mechanical damage designed to replicate typical problems found on an active circuit. Partial discharge measurement was undertaken during the stressing process
First Results from a 1.3 cm EVLA Survey of Massive Protostellar Objects: G35.03+0.35
We have performed a 1.3 centimeter survey of 24 massive young stellar objects
(MYSOs) using the Expanded Very Large Array (EVLA). The sources in the sample
exhibit a broad range of massive star formation signposts including Infrared
Dark Clouds (IRDCs), UCHII regions, and extended 4.5 micron emission in the
form of Extended Green Objects (EGOs). In this work, we present results for
G35.03+0.35 which exhibits all of these phenomena. We simultaneously image the
1.3 cm ammonia (1,1) through (6,6) inversion lines, four methanol transitions,
two H recombination lines, plus continuum at 0.05 pc resolution. We find three
areas of thermal ammonia emission, two within the EGO (designated the NE and SW
cores) and one toward an adjacent IRDC. The NE core contains an UCHII region
(CM1) and a candidate HCHII region (CM2). A region of non-thermal, likely
masing ammonia (3,3) and (6,6) emission is coincident with an arc of 44 GHz
methanol masers. We also detect two new 25 GHz Class I methanol masers. A
complementary Submillimeter Array 1.3 mm continuum image shows that the
distribution of dust emission is similar to the lower-lying ammonia lines, all
peaking to the NW of CM2, indicating the likely presence of an additional MYSO
in this protocluster. By modeling the ammonia and 1.3 mm continuum data, we
obtain gas temperatures of 20-220 K and masses of 20-130 solar. The diversity
of continuum emission properties and gas temperatures suggest that objects in a
range of evolutionary states exist concurrently in this protocluster.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA.
16 pages, 3 figures. Includes the complete version of Figure 3, which was
unable to fit into the journal article due to the number of panel
The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation
We present high angular resolution Submillimeter Array (SMA) and Karl G.
Jansky Very Large Array (VLA) observations of the massive protocluster
G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green
Objects (EGOs), this cluster contains three Class I methanol maser sources,
providing a unique opportunity to test the proposed role of Class I masers as
evolutionary indicators for massive star formation. The millimeter observations
reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated
with all three Class I maser sources. Two of these sources (including the EGO)
are also associated with 6.7 GHz Class II methanol masers; the Class II masers
are coincident with millimeter continuum cores that exhibit hot core line
emission and drive active outflows, as indicated by the detection of SiO(5-4).
In these cases, the Class I masers are coincident with outflow lobes, and
appear as clear cases of excitation by active outflows. In contrast, the third
Class I source is associated with an ultracompact HII region, and not with
Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic,
consistent with its longer dynamical timescale. Our data show that massive
young stellar objects associated only with Class I masers are not necessarily
young, and provide the first unambiguous evidence that Class I masers may be
excited by both young (hot core) and older (UC HII) MYSOs within the same
protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages
including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation
updated, emulateapj versio
Partial discharge analysis of defective three-phase cable
Power distribution cable networks represent a dynamic and complex challenge with regard to the issues of maintenance and providing a reliable, high quality supply of electrical power. Utilities historically used regular off-line testing to investigate the health of their assets. This method of testing is reasonably effective for this purpose but does have certain drawbacks associated with it; customer supply can be interrupted during the testing process and the cables are generally not tested under normal operating conditions. Meaning that the test data is not representative of the Partial discharge (PD) activity that is apparent under on-line conditions and the testing activity itself could trigger previously dormant PD sources. The modern approach for understanding the health of medium voltage (MV) cable distribution networks is to continuously monitor the assets whilst on-line. Analysis if the field data is then used to inform decisions regarding asset replacement and maintenance strategies. PD activity is widely recognised as a symptom linked to the degradation of the dielectric properties of high voltage plant. UK Power Networks sponsored research is being undertaken to investigate the evolution of PD activity within three-phase paper insulated lead covered (PILC) cables containing introduced defects. An experiment has been designed to stress cable lengths in a manner that is representative of the conditions met by on-line circuits [1]. A cable section containing a defect that is known to lead to the premature failure of in-service cables has been PD tested over a range of operating temperatures. The experiment utilizes three-phase energization at rated voltage as well as thermal cycling of the cable to replicate the daily load pattern experienced by circuits in the field. The extension to this work involves PD testing cable samples containing a range of defects to produce a data set consisting of PD pulses produced by varied sources. Analysis of this data should lead to a better understanding of the signals produced by the premature ageing of these types of cable
A new method for automatic Multiple Partial Discharge Classification
A new wavelet based feature parameter have been developed to represent the characteristics of PD activities, i.e. the wavelet decomposition energy of PD pulses measured from non-conventional ultra wide bandwidth PD sensors such as capacitive couplers (CC) or high frequency current transformers (HFCT). The generated feature vectors can contain different dimensions depending on the length of recorded pulses. These high dimensional feature vectors can then be processed using Principal Component Analysis (PCA) to map the data into a three dimensional space whilst the first three most significant components representing the feature vector are preserved. In the three dimensional mapped space, an automatic Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is then applied to classify the data cluster(s) produced by the PCA. As the procedure is undertaken in a three dimensional space, the obtained clustering results can be easily assessed. The classified PD sub-data sets are then reconstructed in the time domain as phase-resolved patterns to facilitate PD source type identification. The proposed approach has been successfully applied to PD data measured from electrical machines and power cables where measurements were undertaken in different laboratories
Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions
Phenotypic robustness is evidenced when single-gene mutations do not result in an obvious phenotype. It has been suggested that such phenotypic stability results from 'buffering' activities of homologous genes as well as non-homologous genes acting in parallel pathways. One approach to characterizing mechanisms of phenotypic robustness is to identify genetic interactions, specifically, double mutants where buffering is compromised. To identify interactions among genes implicated in posterior patterning of the Caenorhabditis elegans embryo, we measured synthetic lethality following RNA interference of 22 genes in 15 mutant strains. A pair of homologous T-box transcription factors (tbx-8 and tbx-9) is found to interact in both C. elegans and C. briggsae, indicating that their compensatory function is conserved. Furthermore, a muscle module is defined by transitive interactions between the MyoD homolog hlh-1, another basic helix-loop-helix transcription factor, hnd-1, and the MADS-box transcription factor unc-120. Genetic interactions within a homologous set of genes involved in vertebrate myogenesis indicate broad conservation of the muscle module and suggest that other genetic modules identified in C. elegans will be conserved
Phase 1 Safety and Tolerability Study of BMP-7 in Symptomatic Knee Osteoarthritis
BACKGROUND: There are no proven therapies that modify the structural changes associated with osteoarthritis (OA). Preclinical data suggests that intra-articular recombinant human BMP-7 (bone morphogenetic protein-7) has reparative effects on cartilage, as well as on symptoms of joint pain. The objective of this study was to determine the safety and tolerability as well as dose-limiting toxicity and maximal tolerated dose of intra-articular BMP-7. The secondary objectives were to determine the effect on symptomatic responses through 24 weeks. METHODS: This was a Phase 1, double-blind, randomized, multi-center, placebo-controlled, single-dose escalation safety study consisting of 4 dosing cohorts in participants with knee OA. Each cohort was to consist of 8 treated participants, with treatment allocation in a 3:1 active (intra-articular BMP-7) to placebo ratio. Eligible participants were persons with symptomatic radiographic knee OA over the age of 40. The primary objective of this study was to determine the safety and tolerability of BMP-7 including laboratory assessments, immunogenicity data and radiographic assessments. Secondary objectives were to determine the proportion of participants with a 20%, 50%, and 70% improvement in the WOMAC pain and function subscales at 4, 8, 12, and 24 weeks. Other secondary outcomes included the change from baseline to 4, 8, 12, and 24 weeks for the OARSI responder criteria. RESULTS: The mean age of participants was 60 years and 73% were female. All 33 participants who were enrolled completed the study and most adverse events were mild or moderate and were similar in placebo and BMP-7 groups. The 1 mg BMP-7 group showed a higher frequency of injection site pain and there was no ectopic bone formation seen on plain x-rays. By week 12, most participants in both the BMP-7 and placebo groups experienced a 20% improvement in pain and overall the BMP-7 group was similar to placebo with regard to this measurement. In the participants who received 0.1 mg and 0.3 mg BMP-7, there was a trend toward greater symptomatic improvement than placebo. The other secondary endpoints showed similar trends including the OARSI responder criteria for which the BMP-7 groups had more responders than placebo. CONCLUSIONS: There was no dose limiting toxicity identified in this study. The suggestion of a symptom response, together with the lack of dose limiting toxicity provide further support for the continued development of this product for the treatment of osteoarthritis.ARC Future Fellowship; Stryker Biotec
- âŚ