20,531 research outputs found

    Self reported aggravating activities do not demonstrate a consistent directional pattern in chronic non specific low back pain patients: An observational study

    Get PDF
    Question: Do the self-reported aggravating activities of chronic non-specific low back pain patients demonstrate a consistent directional pattern? Design: Cross-sectional observational study. Participants: 240 chronic non specific low back pain patients. Outcome measure: We invited experienced clinicians to classify each of the three self-nominated aggravating activities from the Patient Specific Functional Scale by the direction of lumbar spine movement. Patients were described as demonstrating a directional pattern if all nominated activities moved the spine into the same direction. Analyses were undertaken to determine if the proportion of patients demonstrating a directional pattern was greater than would be expected by chance. Results: In some patients, all tasks did move the spine into the same direction, but this proportion did not differ from chance (p = 0.328). There were no clinical or demographic differences between those who displayed a directional pattern and those who did not (all p > 0.05). Conclusion: Using patient self-reported aggravating activities we were unable to demonstrate the existence of a consistent pattern of adverse movement in patients with chronic non-specific low back pain

    Study of an engine flow diverter system for a large scale ejector powered aircraft model

    Get PDF
    Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed

    Iridovirus infection of cell cultures from the Diaprepes root weevil, Diaprepes abbreviatus

    Get PDF
    We here report the development and viral infection of a Diaprepes root weevil cell culture. Embryonic tissues of the root weevil were used to establish cell cultures for use in screening viral pathogens as potential biological control agents. Tissues were seeded into a prepared solution of insect medium and kept at a temperature of 24°C. The cell culture had primarily fibroblast-like morphology with some epithelial monolayers. Root weevil cells were successfully infected in vitro Abbreviation: / IIV-6: Invertebrate Iridescent Virus

    Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel

    Get PDF
    A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system

    Curvature and Acoustic Instabilities in Rotating Fluid Disks

    Get PDF
    The stability of a rotating fluid disk to the formation of spiral arms is studied in the tightwinding approximation in the linear regime. The dispersion relation for spirals that was derived by Bertin et al. is shown to contain a new, acoustic instability beyond the Lindblad resonances that depends only on pressure and rotation. In this regime, pressure and gravity exchange roles as drivers and inhibitors of spiral wave structures. Other instabilities that are enhanced by pressure are also found in the general dispersion relation by including higher order terms in the small parameter 1/kr for wavenumber k and radius r. These instabilities are present even for large values of Toomre's parameter Q. Unstable growth rates are determined in four cases: a self-gravitating disk with a flat rotation curve, a self-gravitating disk with solid body rotation, a non-self-gravitating disk with solid body rotation, and a non-self-gravitating disk with Keplerian rotation. The most important application appears to be as a source of spiral structure, possibly leading to accretion in non-self-gravitating disks, such as some galactic nuclear disks, disks around black holes, and proto-planetary disks. All of these examples have short orbital times so the unstable growth time can be small.Comment: 30 pages, 5 figures, scheduled for ApJ 520, August 1, 199

    Type I Superconductivity in YbSb2 Single Crystals

    Get PDF
    We present evidence of type I superconductivity in YbSb2 single crystals, from DC and AC magnetization, heat capacity and resistivity measurements. The critical temperature and critical field are determined to be Tc≈T_c\approx 1.3 K and Hc≈H_c\approx 55 Oe. A small Ginzburg-Landau parameter \kappa = 0.05, together with typical magnetization isotherms of type I superconductors, small critical field values, a strong Differential Paramagnetic Effect (DPE) signal, and a field-induced change from second to first order phase transition, confirm the type I nature of the superconductivity in YbSb2. A possible second superconducting state is observed in the radiofrequency (RF) susceptibility measurements, with Tc(2)≈T_{c}^{(2)}\approx 0.41 K and Hc(2)≈H_{c}^{(2)}\approx 430 Oe.Comment: 6 pages, 10 figure

    M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes

    Get PDF
    Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))
    • …
    corecore