565 research outputs found

    In vitro comparison of four treatments which discourage infestation by head lice

    Get PDF
    Products which discourage the transmission of head lice are appealing; however, few studies have tested this concept. This study aims to test the efficacy of four commercial products which claim to discourage infestation by head lice; MOOV Head Lice Defence Spray (MOOV), Wild Child Quit Nits Head Lice Defence Spray (Wild Child), 100% Natural Head Lice Beater (Lice Beater) or Lysout Natural Anti-Lice Spray (Lysout). An in vitro challenge test was used. Briefly, one half of a filter paper lining the base of a petri dish was treated with the test product. Lice were then introduced to the centre of the dish, which was covered and placed in the dark at 20°C for 30 min. The number of lice on the treated and untreated sides of the filter paper was then counted after 2, 4 and 8 h post-application. MOOV was significantly more effective at discouraging the transmission of lice than the water control (p < 0.01), while Wild Child and Lysout were not at all time points. Lice Beater was significantly worse than the water control after 2 h (p < 0.01), while there was no difference after 4 and 8 h. MOOV was found to perform significantly better than Wild Child (p < 0.05) and Lice Beater (p < 0.05) at all time points. It also performed significantly better than Lysout at 2 (p < 0.05) and 8 h (p < 0.05), but not 4 h. MOOV offers the best efficacy and consistency of performance of the four products tested to discourage the transmission of head lice

    Constitutively Active Canonical NF-κB Pathway Induces Severe Bone Loss in Mice

    Get PDF
    Physiologic osteoclastogenesis entails activation of multiple signal transduction pathways distal to the cell membrane receptor RANK. However, atypical osteoclastogenesis driven by pro-inflammatory stimuli has been described. We have reported recently a novel mechanism whereby endogenous mutational activation of the classical NF-κB pathway is sufficient to induce RANKL/RANK-independent osteoclastogenesis. Here we investigate the physiologic relevance of this phenomenon in vivo. Using a knock-in approach, the active form of IKK2, namely IKK2SSEE, was introduced into the myeloid lineage with the aid of CD11b-cre mice. Phenotypic assessment revealed that expression of IKK2SSEE in the myeloid compartment induced significant bone loss in vivo. This observation was supported by a dramatic increase in the number and size of osteoclasts in trabecular regions, elevated levels of circulating TRACP-5b, and reduced bone volume. Mechanistically, we observed that IKK2SSEE induced high expression of not only p65 but also p52 and RelB; the latter two molecules are considered exclusive members of the alternative NF-κB pathway. Intriguingly, RelB and P52 were both required to mediate the osteoclastogenic effect of IKK2SSEE and co-expression of these two proteins was sufficient to recapitulate osteoclastogenesis in the absence of RANKL or IKK2SSEE. Furthermore, we found that NF-κB2/p100 is a potent inhibitor of IKK2SSEE-induced osteoclastogenesis. Deletion of p52 enabled more robust osteoclast formation by the active kinase. In summary, molecular activation of IKK2 may play a role in conditions of pathologic bone destruction, which may be refractory to therapeutic interventions targeting the proximal RANKL/RANK signal

    Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus

    Get PDF
    Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Extending the remit of evidence-based policing

    Get PDF
    Evidence-based policing (EBP) is an important strand of the UK’s College of Policing’s Police Education Qualifications Framework (PEQF), itself a component of a professionalisation agenda. This article argues that the two dominant approaches to EBP, experimental criminology and crime science, offer limited scope for the development of a comprehensive knowledge base for policing. Although both approaches share a common commitment to the values of science, each recognizes their limited coverage of policing topics. The fundamental difference between them is what each considers ‘best’ evidence. This article critically examines the generation of evidence by these two approaches and proposes an extension to the range of issues EBP should cover by utilizing a greater plurality of methods to exploit relevant research. Widening the scope of EBP would provide a broader foundational framework for inclusion in the PEQF and offers the potential for identifying gaps in the research, constructing blocks for knowledge building, and syllabus development in higher level police education

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer

    Get PDF
    INTRODUCTION: There is growing evidence that heritable genetic variation modulates metastatic efficiency. Our previous work using a mouse mammary tumor model has shown that metastatic efficiency is modulated by the GTPase-activating protein encoded by Sipa1 ('signal-induced proliferation-associated gene 1'). The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) within the human SIPA1 gene are associated with metastasis and other disease characteristics in breast cancer. METHOD: The study population (n = 300) consisted of randomly selected non-Hispanic Caucasian breast cancer patients identified from a larger population-based series. Genomic DNA was extracted from peripheral leukocytes. Three previously described SNPs within SIPA1 (one within the promoter [-313G>A] and two exonic [545C>T and 2760G>A]) were characterized using SNP-specific PCR. RESULTS: The variant 2760G>A and the -313G>A allele were associated with lymph node involvement (P = 0.0062 and P = 0.0083, respectively), and the variant 545C>T was associated with estrogen receptor negative tumors (P = 0.0012) and with progesterone negative tumors (P = 0.0339). Associations were identified between haplotypes defined by the three SNPs and disease progression. Haplotype 3 defined by variants -313G>A and 2760G>A was associated with positive lymph node involvement (P = 0.0051), and haplotype 4 defined by variant 545C>T was associated with estrogen receptor and progesterone receptor negative status (P = 0.0053 and P = 0.0199, respectively). CONCLUSION: Our findings imply that SIPA1 germline polymorphisms are associated with aggressive disease behavior in the cohort examined. If these results hold true in other populations, then knowledge of SIPA1 SNP genotypes could potentially enhance current staging protocols

    A Reliability-Generalization Study of Journal Peer Reviews: A Multilevel Meta-Analysis of Inter-Rater Reliability and Its Determinants

    Get PDF
    Background: This paper presents the first meta-analysis for the inter-rater reliability (IRR) of journal peer reviews. IRR is defined as the extent to which two or more independent reviews of the same scientific document agree. Methodology/Principal Findings: Altogether, 70 reliability coefficients (Cohen’s Kappa, intra-class correlation [ICC], and Pearson product-moment correlation [r]) from 48 studies were taken into account in the meta-analysis. The studies were based on a total of 19,443 manuscripts; on average, each study had a sample size of 311 manuscripts (minimum: 28, maximum: 1983). The results of the meta-analysis confirmed the findings of the narrative literature reviews published to date: The level of IRR (mean ICC/r 2 =.34, mean Cohen’s Kappa =.17) was low. To explain the study-to-study variation of the IRR coefficients, meta-regression analyses were calculated using seven covariates. Two covariates that emerged in the metaregression analyses as statistically significant to gain an approximate homogeneity of the intra-class correlations indicated that, firstly, the more manuscripts that a study is based on, the smaller the reported IRR coefficients are. Secondly, if the information of the rating system for reviewers was reported in a study, then this was associated with a smaller IRR coefficient than if the information was not conveyed. Conclusions/Significance: Studies that report a high level of IRR are to be considered less credible than those with a low level o

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org
    • …
    corecore