945 research outputs found

    Coherence-Induced Bias Reduction in Synthetic Aperture Sonar Along-Track Micronavigation

    Get PDF

    Phase wrap error correction by random sample consensus with application to synthetic aperture sonar micro-navigation

    Get PDF

    Occlusion Modeling for Coherent Echo Data Simulation:A Comparison Between Ray-Tracing and Convex-Hull Methods

    Get PDF
    The ability to simulate realistic coherent datasets for synthetic aperture imaging systems is crucial for the design, development and evaluation of the sensors and their signal processing pipelines, machine learning algorithms and autonomy systems. In the case of synthetic aperture sonar (SAS), collecting experimental data is expensive and it is rarely possible to obtain ground truth of the sensor’s path, the speed of sound in the medium, and the geometry of the imaged scene. Simulating sonar echo data allows signal processing algorithms to be tested with known ground truth, enabling rapid and inexpensive development and evaluation of signal processing algorithms. The de-facto standard for simulating conventional high-frequency (i.e., > 100 kHz) SAS echo data from an arbitrary sensor, path and scene is to use a point-based or facet-based diffraction model. A crucial part of this process is acoustic occlusion modeling. This article describes a SAS simulation pipeline and compares implementations of two occlusion methods; ray-tracing, and a newer approximate method based on finding the convex hull of a transformed point cloud. The full capability of the simulation pipeline is demonstrated using an example scene based on a high-resolution 3D model of the SS Thistlegorm shipwreck which was obtained using photogrammetry. The 3D model spans a volume of 220 × 130 × 25 m and is comprised of over 30 million facets that are decomposed into a cloud of almost 1 billion points. The convex-hull occlusion model was found to result in simulated SAS imagery that is qualitatively indistinguishable from the ray-tracing approach and quantitatively very similar, demonstrating that use of this alternative method has potential to improve speed while retaining high fidelity of simulation.The convex-hull approach was found to be up to 4 times faster in a fair speed comparison with serial and parallel CPU implementations for both methods, with the largest performance increase for wide-beam systems. The fastest occlusion modeling algorithm was found to be GPU-accelerated ray-tracing over the majority of scene scales tested, which was found to be up to 2 times faster than the parallel CPU convex-hull implementation. Although GPU implementations of convex hull algorithms are not currently readily available, future development of GPU-accelerated convex-hull finding could make the new approach much more viable. However, in the meantime, ray-tracing is still preferable, since it has higher accuracy and can leverage existing implementations for high performance computing architectures for better performance

    A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation of Antarctica, and implications for phytoprovincialism in the high southern latitudes

    Get PDF
    The thickest uppermost Cretaceous to lowermost Paleogene (Maastrichtian to Danian) sedimentary succession in the world is exposed on southern Seymour Island (65° South) in the James Ross Basin, Antarctic Peninsula. This fossiliferous shallow marine sequence, which spans the Cretaceous–Paleogene boundary, has allowed a high-resolution analysis of well-preserved marine palynomorphs. Previous correlation of Cretaceous–Paleogene marine palynomorph assemblages in the south polar region relied on dinoflagellate cyst biozonations from New Zealand and southern Australia. The age model of the southern Seymour Island succession is refined and placed within the stratigraphical context of the mid to high southern palaeolatitudes. Quantitative palynological analysis of a new 1102 m continuous stratigraphical section comprising the uppermost Snow Hill Island Formation and the López de Bertodano Formation (Marambio Group) across southern Seymour Island was undertaken. We propose the first formal late Maastrichtian to early Danian dinoflagellate cyst zonation scheme for the Antarctic based on this exceptional succession. Two new late Maastrichtian zones, including three subzones, and one new early Danian zone are defined. The oldest beds correlate well with the late Maastrichtian of New Zealand. In a wider context, a new South Polar Province based on Maastrichtian to Danian dinoflagellate cysts is proposed, which excludes most southern South American marine palynofloras. This interpretation is supported by models of ocean currents around Antarctica and implies an unrestricted oceanic connection across Antarctica between southern South America and the Tasman Sea

    Statistics of an autoregressive correlated random walk along a return path

    Get PDF
    • …
    corecore