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Coherence-Induced Bias Reduction in Synthetic

Aperture Sonar Along-Track Micronavigation
Benjamin Thomas and Alan Hunter, Senior Member, IEEE

Abstract1

Sub-wavelength motion estimation is vital for the production of focused synthetic aperture sonar (SAS) imagery.2

The required precision is obtainable from the sonar data itself through a process termed micronavigation. Along-track3

micronavigation is achieved by a similar technique to that used in correlation velocity logs (CVLs), where sparse4

estimates of the spatial coherence function are interpolated to estimate the location of the peak coherence and hence5

estimate the inter-ping vehicle motion. However, along-track micronavigation estimates made using this technique are6

biased, which limits the utility of these measurements for long-term navigation of autonomous underwater vehicles7

(AUVs).8

Three sources of along-track motion estimation bias are considered in this paper. Firstly, imperfect temporal9

registration between the signals results in coherence estimates that are negatively biased as a function of the temporal10

offset. Secondly, the sparse estimates of the spatial coherence function are obtained by cross-correlation of complex11

baseband signals, a process which is known to result in positively biased coherence estimates, especially when the12

true coherence is low. Finally, mismatches between the underlying spatial coherence function and the interpolation13

kernel used to estimate the peak coherence location also result in along-track micronavigation bias.14

In this paper we describe and evaluate three methods for reducing along-track micronavigation bias. We in-15

troduce a temporal registration of the signals prior to coherence estimation, which reduces the impact of negative16

coherence bias due to temporal offsets. The remaining coherence estimation bias is reduced by combining multiple17

coherence estimates in a Bayesian coherence estimator. Additionally, an improved interpolation kernel is derived with18

a significantly improved fit compared to the current gold standard Gaussian interpolation kernel.19

The improvements in along-track micronavigation accuracy are demonstrated using two simulated datasets, which20

both allow comparison with ground truth. The first involves direct simulation of the spatial coherence from a given21

inter-ping geometry using the pulse-echo formulation of the van Cittert-Zernike theorem, while the second involves22

simulation of raw sonar echo data using a point scatterer model. Using these simulations, a reduction in along-track23

micronavigation bias of 48.5 - 99.5% is demonstrated, with reductions in along-track micronavigation error standard24

deviation of up to 34%. This improvement expands the potential for SAS-equipped AUVs to reduce their long-term25

navigation drift, facilitating longer underwater transits, improved target localisation and reduced track misalignment26

in repeat-pass operations.27

Benjamin Thomas and Alan Hunter are with the University of Bath, UK

Manuscript received Month Day, Year; revised Month Day, Year.
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Coherence-Induced Bias Reduction in Synthetic28

Aperture Sonar Along-Track Micronavigation29

I. INTRODUCTION30

Localisation of autonomous underwater vehicles (AUVs) is typically achieved by optimal fusion and integration31

of measurements made by high precision inertial navigation systems (INSs) consisting of accelerometers, gyroscopes32

and magnetometers, and an aiding sensor such as a doppler velocity log (DVL). One such state-of-the-art system,33

the iXblue Phins Subsea, is quoted to achieve DVL-aided positioning accuracy of 0.05% of distance travelled in34

a straight line [1]. However, the short-term precision is typically insufficient for AUVs equipped with synthetic35

aperture sonar (SAS) systems to form adequately focused images. This has led to the use of through-the-sensor36

navigation estimation algorithms, commonly referred to as ‘micronavigation,’ that exploit redundant data collected37

between adjacent pings to achieve the sub-wavelength precision required for synthetic aperture image formation.38

Along-track motion estimates in redundant phase centre (RPC) micronavigation are obtained by estimating the39

degree of coherence between signals received by the subset of phase centre pairs around an a-priori inter-ping motion40

estimate. The location of the phase centre pair with highest coherence gives a coarse estimate of sensor advance.41

Interpolating this sparsely sampled set of coherence estimates in the along-track direction allows the location of the42

peak coherence to be found as a fraction of a phase centre spacing, which refines the coarse along-track motion43

estimate. This method was first described by Dickey for velocity estimation of aircraft using radar [2], [3] and later44

for ships using sonar [4], [5].45

The high precision achieved by through-the-sensor navigation estimation algorithms suggests there is potential46

for SAS micronavigation estimates to be used to improve the long-term navigation accuracy and precision of AUVs47

[6]. This would allow AUVs to perform longer underwater transits, improve geo-location accuracy of SAS images,48

and enable repeated passes to be made with improved accuracy. This enticing potential was noted in 2003 by Gough49

and Miller [7], who suggested that “it could be possible that sometime in the future, all AUVs will be deployed50

with an array SAS on board not for imaging, but for navigation”.51

Limited attempts have been made to realise this potential to date. In an experimental trial [8], a disparity was52

identified between micronavigation estimates and INS estimates in both the along-track and across-track directions.53

While it is suggested that the across-track disparity can be explained by a misalignment between the SAS and the54

INS, no explanation is given for the along-track disparity. We suggest that this disparity was likely caused by55

a combination of 1) the fact that coherence estimates between complex baseband signals are known to be biased56

[9]–[13], 2) the use of an interpolation kernel with poor correspondence to the spatial coherence function [14], and57

3) the along-track motion estimation bias caused by relative inclination of the SAS with respect to the seafloor58

[6]. In this paper, we investigate the along-track micronavigation bias caused by coherence biases and mismatches59

between the interpolation kernel and the spatial coherence function. Investigation of the effect of relative inclination60

July 7, 2021 DRAFT



2

of the SAS and seafloor is reserved for future work. In Section II we provide a review of the conventional approach61

to along-track motion estimation using redundant signals, and in Section II-A we identify the sources of bias that62

are inherent to this method: coherence biases and interpolation kernel bias. Section III reviews the definition and63

statistics of the coherence magnitude between complex baseband signals, and Sections III-A and III-B provide two64

methods which combine to reduce the coherence bias; a temporal registration and a Bayesian approach to residual65

bias reduction. In Section IV we review the van Cittert-Zernike theorem for pulse-echo signals derived by Brown66

[12] and derive an improved interpolation kernel function. The various bias sources and compensation methods67

are summarised in Table I. In Section V we quantify the resulting reduction in along-track micronavigation bias68

using two simulated datasets. The first is based on direct simulation of coherence samples using the van Cittert-69

Zernike theorem, from which along-track micronavigation estimates are made and compared with ground truth.70

The second method implements a full along-track micronavigation processing chain using simulated raw echo data71

from a point scatterer model. Simulated data such as these are preferred over experimental data from fielded SAS72

systems for this work for multiple reasons, not least because it enables direct comparison of individual inter-ping73

micronavigation estimates with ground truth. Importantly, it also allows the multiple sources of micronavigation74

biases to be decoupled under ideal conditions; in this case the effect of relative inclination between the SAS array75

and the ensonified seafloor [6] has been neglected by simulating a horizontal seafloor and a perfectly linear collection76

geometry.77

Bias source Gold standard correction method Proposed correction method Impact

Temporal

misregistration

Non-zero lag cross-correlation to

approximate sample coherence

Delay and yaw

compensation

(Section III-A)

Accurate sample coherence estimation by

zero-lag cross-correlation

Reduced along-track micronavigation bias

Zero-lag

coherence bias

Use of large estimation windows Bayes coherence

estimation

(Section III-B)

Reduced coherence bias with shorter

estimation windows for improved

inter-ping sway and heave tolerance

Interpolation

kernel mismatch

Gaussian interpolation kernel [14] Cubic interpolation kernel

(Section IV)

Reduced along-track micronavigation bias

TABLE I: A summary of the proposed methods for along-track micronavigation bias reduction and their impacts.

II. ALONG-TRACK MICRONAVIGATION78

Estimation of the along-track displacement of a SAS between successive pings is analogous to the operation of a79

uni-directional correlation velocity log (CVL), as has been described previously in [14]–[17]. We review the method80

here for systems with uniformly spaced receiver array elements to clarify our implementation of the procedure and81

to identify the steps at which various biases are introduced.82

Consider a pair of successive pings {p ∈ [p1, p2]}, between which the foremost phase centres1 from ping p183

1The array of phase centres has elements located at the midpoint of the transmitter and each receive element. Phase centres are frequently

used to approximate a bistatic sensor array as an array of monostatic transducers.
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Fig. 1: Along-track SAS micronavigation. (a) Coher-

ence is estimated between signals received by phase

centre pairs for a range of potential phase centre

overlaps. (b) In regions of favourable coherence, the

matrix of coherence estimates has high values along

a diagonal. (c) The mean coherence is taken over the

diagonals of (b) and the maximum coherence loca-

tion is estimated by fitting an interpolation kernel to

the peak and its adjacent samples.
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overlap with the aftmost phase centres from ping p2. The signals received by the phase centres are denoted sa,p[t]84

where a denotes the phase centre index and t = {n∆t | n ∈ [0, ..., Ns− 1]} where ∆t = 1/fs is the sample period85

at sampling frequency fs, Ns is the number of samples and t is time. These signals are windowed in time such86

that each window corresponds to a subset of the swath in range by87

sa,p,q[t] = sa,p[t] rect

(
t− tq
τ

)
(1)

where τ = Nw/B is the temporal window length corresponding to the number of samples in the temporal window88

Nw for frequency bandwidth B. The centre of the temporal window is given by tq = 2Rq/c at range Rq for sound89

speed c. The rectangular windowing function is defined by90

rect(x) =


0, if |x| > 1

2

1
2 , if |x| = 1

2

1, if |x| < 1
2

. (2)

The inter-ping sample coherence between the range windowed signals is estimated between candidate phase centre91

pairs, as demonstrated in Figure 1a. These sample coherences are populated into the matrix92

µ̂q =


µ̂1,1 . . . µ̂1,A

... µ̂a,b

...

µ̂A,1 . . . µ̂A,A

 , (3)

shown in Figure 1b, where A is the number of receivers in the array, (̂·) denotes an estimate and where sample93

coherence is defined as the zero-lag cross-correlation coefficient given by94

µ̂a,b =

∣∣∣∣∣
∑

t sa,p1,q[t]s
∗
b,p2,q

[t]√∑
t |sa,p1,q[t]|

∑
t |sb,p2,q[t]|

∣∣∣∣∣. (4)

Typically, only a subset of the matrix of sample coherences µ̂q must be populated, since approximate a-priori95

knowledge of the platform velocity is often available from the vehicle navigation system.96

This definition of the degree of coherence is only a valid measure of spatial coherence for time-aligned signals,97

which is rarely the case in practice due to inter-ping sway, inter-ping yaw and crabbing motions. The typical98

workaround involves computing the normalised cross-correlation [17] given by99

ρ̂a,b[τ ] =
sa,p1,q[t] ⋆ sb,p2,q[t]√∑
t |sa,p1,q[t]|

∑
t |sb,p2,q[t]|

(5)

where100

(x1 ⋆ x2)[τ ] ≡
∞∑

τ=−∞
x∗1[t]x2[t+ τ ] (6)

defines cross-correlation and (·)∗ denotes conjugation. This normalised cross-correlation is conveniently computed101

in the Fourier domain as102

(x1 ⋆ x2)[τ ] ≡ F−1 {X∗
1 [f ]X2[f ]} (7)

where Xi[f ] = F {xi[t]}, with F {·} denoting the Fourier transform operator. However, it should be noted that the103

definition in (7) performs a circular cross-correlation, while (5) does not.104
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We now replace the matrix of sample coherences µ̂q with the matrix105

ρ̂q =


ρ̂1,1 . . . ρ̂1,A

... ρ̂a,b
...

ρ̂A,1 . . . ρ̂A,A

 , (8)

whose elements are the maximum of the normalised cross-correlation in (5) over a subset of temporal lags for each106

phase centre pair,107

ρ̂a,b = max
τ ′

{∣∣ρ̂a,b [τ ] ∣∣} , (9)

where τ ′ = {n∆t | n ∈ [−nmax, ..., nmax]} is the subset of temporal lags where nmax is the maximum absolute108

sample lag.109

Having populated the relevant subset of ρ̂q , the mean across the diagonal elements is taken by110

ρ̄[η] =

η∑
b=1

ρ̂a′,b

η
(10)

where a′ = A− (η− b) and {η ∈ [1, ..., A]} is the vector of candidate phase centre overlaps and the range window111

index q has been dropped for clarity in the following. The location of the maximum along this vector,112

η̂ = argmax
η

{ρ̄[η]} (11)

gives an estimate of the closest integer number of overlapping phase centres.113

This estimate is then refined by means of interpolation, using the three samples that represent the peak of ρ̄[η],114

namely ρ̄[η̂−1], ρ̄[η̂] and ρ̄[η̂+1], with shorthand ρ−1, ρ0 and ρ1 respectively in (13-15). The sub-sample estimate115

for the location of the peak coherence is given by finding the parameters of an interpolation kernel that passes116

through these points. Interpolation kernels in the literature include a quadratic [16], [18], a triangular function [19]117

and a Gaussian [19], [20]. Currently, the gold standard is the Gaussian interpolation kernel, which has been shown118

to improve SAS image quality both qualitatively and quantitatively when compared to the quadratic kernel [14] and119

to reduce along-track motion estimation bias when compared to both the triangular interpolation kernel [19] and120

the quadratic interpolation kernel [14]. The Gaussian interpolation kernel takes the form [14]121

µ(x) = µ0 exp

{
−1

2

(x− ζ)2

σ2

}
(12)

where µ0 is the peak coherence, σ defines the kernel width, ζ is the peak offset and x, ζ and σ are in the non-122

dimensional units of phase centre spacings. The peak offset estimate is given by the three-point interpolation formula123

[14]124

ζ̂ =
1

2

ln(ρ−1)− ln(ρ1)

ln(ρ−1)− 2 ln(ρ0) + ln(ρ1)
, (13)

the peak coherence estimate is given by125

µ̂0 = exp

{
ln(ρ−1)

2 + 16 ln(ρ0)
2 + ln(ρ1)

2 − 8 ln(ρ−1) ln(ρ0)− 2 ln(ρ−1) ln(ρ1)− 8 ln(ρ0) ln(ρ1)

−8 (ln(ρ−1)− 2 ln(ρ0) + ln(ρ1))

}
(14)

and the kernel width estimate is given by126

σ̂ =
1√

ln(ρ−1)− 2 ln(ρ0) + ln(ρ1)
, (15)
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which can be interpreted as a non-dimensional measure of spatial coherence length. The sub-sample estimate for127

the number of overlapping phase centres at each temporal window is then given by128

ψ̂ = η̂ + ζ̂ (16)

and finally, the along-track motion estimate ξ̂ is given for each temporal window by129

ξ̂ =
(
A− ψ̂

) ∆

2
(17)

where ∆ is the distance between elements in the receiver array.130

A. Sources of Motion Estimation Bias131

Populating µ̂q with the maximum of the normalised cross-correlation over multiple lags in place of the zero-lag132

normalised cross-correlation does improve robustness to temporal offsets between the signals. However, there are133

problems with this approach, not limited to the extra computational expense involved noted by Cook [17]. Firstly,134

the true peak of the cross-correlation function is only sampled if the time delay between signals is equal to an135

integer multiple of the sampling period. Moreover, the maximum of the normalised cross-correlation over multiple136

lags is a biased estimator of coherence. Nevertheless, even when the coherence is correctly computed as the zero-137

lag correlation coefficient as in (4), the coherence estimates are still biased towards larger values, particularly at138

low coherence. In the following, we refer to these biases as the ‘non-zero lag coherence bias’ and the ‘zero-lag139

coherence bias’.140

These biases are demonstrated in Figure 2, which shows the result of computing the maximum of the normalised141

cross-correlation function over a range of maximum absolute temporal lags and population coherence values. The142

coherence estimate bias shown is the median error between the population coherence and the coherence estimate over143

a Carlo simulation of Gaussian-distributed circular complex signals with length n = 120 samples. The estimation144

bias is most pronounced for low values of population coherence and when the maximum absolute temporal lag145

is non-zero. However, even the zero-lag normalised cross-correlation exhibits a bias, particularly at low values146

of population coherence. In Section III-A we present a method to eliminate the non-zero lag coherence bias by147

temporal registration prior to computing the zero-lag coherence using (4). In Section III-B we present a method148

to mitigate the zero lag coherence bias, which involves Bayesian estimation of population coherence over multiple149

sample coherence estimates.150

While a Gaussian interpolation kernel is a considerably better fit to the along-track spatial coherence function than151

a quadratic [14], errors remain between the Gaussian function and the true along-track spatial coherence function.152

We observe that this mismatch results in biased along-track motion estimates. In Section IV, we derive an improved153

interpolation kernel and demonstrate the improved fit it offers.154

III. MINIMISING COHERENCE BIAS155

The degree of coherence between two signals x1(t) and x2(t) is defined as [21]156

µ ≡ E{x1(t)x2(t)∗}√
E {|x1(t)|2}E{|x2(t)|2}

, (18)
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values of population coherence and high maximum

absolute temporal lag.
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Fig. 3: Example sample coherence probability density functions given population coherence {µ12 ∈ [0.1, 0.5, 0.8]}

and number of independent samples {n ∈ [60, 120, 180]}.

where E {·} represents the expectation operator. For discrete signals, the maximum likelihood estimate of the157

coherence magnitude is given by158

µ̂ =

∣∣∣∣∣
∑

t x1[t]x2[t]
∗√∑

t |x1[t]|
∑

t |x2[t]|

∣∣∣∣∣, (19)

which is the magnitude of the sample coherence over these finite-length signals.159
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For a pair of jointly complex circular Gaussian processes, the probability density function of the sample coherence160

magnitude µ̂ given the population coherence µ and the number of independent samples n has been derived by Carter161

and Nuttall [22] and Touzi and Lopez [10] as162

P(µ̂;µ, n) = 2(n− 1)(1− µ2)nµ̂(1− µ̂2)n−2
2F1(n, n; 1, µ

2µ̂2), (20)

where 2F1 denotes the Gauss hypergeometric function2 [23]. Examples of this probability density function (PDF)163

are shown in Figure 3 for a variety of values of µ and n. The moments {mk | k ∈ Z+} of this PDF are given by164

[11]165

mk =
Γ(n)Γ(1 + k

2 )

Γ(L+ k
2 )

(1− µ2)n 3F2

(
1 +

k

2
, n, n;n+

k

2
, 1;µ

)
(21)

where pFq is the generalised hypergeometric function and Γ(·) is the gamma function. The first moment, bias, and166

second moment are shown in Figures 4a, 4b and 4c respectively, for {n ∈ [60, 120, 180]}. The bias is largest for167

small n and low µ.168

A. Non-Zero Lag Bias169

The non-zero lag coherence bias can be minimized by performing a time delay and RPC yaw compensation prior170

to estimation of the coherence. We begin the process with range-windowed signals sa,p,q[t] from (1), calculate the171

normalised cross-correlation function for all relevant phase centre pairs using (5), and take the maximum over a172

subset of temporal lags using (9) to populate ρ̂q . Taking the mean across the diagonals of the upper triangle of173

ρ̂q using (10) and finding the index of the maximum value gives an estimate of the integer number of overlapping174

phase centres η̂. We then form the matrix of normalised cross-correlations for these maximally overlapping phase175

centres by introducing the RPC array axis176

u =

[
− η̂ − 1

2
, . . . ,

η̂ − 1

2

]
∆

2
(22)

and re-indexing of the result of (5) to extract the normalised cross-correlation functions of the maximally overlapping177

phase centre pairs as a function of RPC array axis u and temporal lag τ .178

υ̂[ub, τ ] = ρ̂a′,b[τ ], (23)

where a′ = A− (η̂ − b) and {b ∈ [1, ..., η̂]}. This matrix of normalised cross-correlations is then beamsteered [24]179

over a range of angles ϕ by180

Υ̂[ϕ, τ ] =
∑
u

υ̂[u, τ ] exp(jkcu sin(ϕ)) (24)

where kc = 2πfc/c is the wavenumber at centre frequency fc. The location181

(ϕ̂′, τ̂ ′) = argmax
ϕ,τ

{∣∣∣Υ̂ [ϕ, τ ]
∣∣∣} (25)

gives a sample-precision estimate of the time delay τ̂ ′ between the signals, and an estimate of the RPC yaw ϕ̂′,182

which is refined using the Lagrange three-point quadratic interpolation formula [18] to give ϕ̂. The time delay183

2The Gauss hypergeometric function is challenging to compute for large n. We use the variable-precision floating-point arithmetic (VPA)

capability in MATLAB to compute (20).
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estimates are refined by exploiting the phase of the peak coherence using the process in [25] to give the fine time184

delay estimate τ̂ . A possible improvement to this process is to use a sinus cardinal model to refine the time delay185

estimate instead of quadratic interpolation, which has been demonstrated to reduce time delay estimation bias [26].186

Once estimates for the fine time delay τ̂q and RPC yaw ϕ̂q have been made, the data are re-windowed such that187

s′a,p1,q[t] = sa,p1 [t] rect

(
t− tq
τ

)
(26)

as before, and188

s′b,p2,q[t] = s′b,p2,q

t−
ub sin

(
ϕ̂q

)
c

− τ̂q

 rect

(
t− tq
τ

)
. (27)

which temporally aligns the redundant signals. We can now form the matrix of coherence estimates µ̂q using the189

normalised zero-lag cross-correlation function (4). This matrix of coherence estimates is now assumed to be only190

affected by the zero-lag coherence bias.191

B. Zero Lag Bias192

The temporal registration in Section III-A serves to remove the non-zero lag coherence bias. However, the zero-193

lag coherence bias remains and must be compensated in order to reduce along-track micronavigation bias. While194

it can be shown that no unbiased estimator of sample coherence exists, there are strategies that can mitigate the195

remaining zero-lag coherence bias [11]. Since the probability density function (PDF) of the sample coherence as196

computed by the zero-lag normalised cross-correlation is known under the assumption of jointly complex circular197

Gaussian distributed signals, we now take a Bayesian approach to reducing the coherence estimation bias.198

We begin with the matrix of sample coherences µ̂q . The values along the diagonals of µ̂q are redundant and199

potentially correlated sample estimates of spatial coherence at the same spatial lag. The correlation between the200

covariances from which these sample spatial coherence estimates are derived can be predicted given the geometry and201

the sonar parameters [27, Eq. (8)]. For geometries and sonar parameters that result in sufficiently low correlation202

between adjacent sample spatial coherence estimates, we can approximate these estimates as independent and203

perform a Bayesian estimation [28], [29] of the underlying population coherence from these samples using the204

rectangular prior205

p(µ) =

1 if 0 < µ ≤ 1

0 otherwise
(28)

by the following process. The posterior distribution for the population coherence for each candidate overlap η is206

given by the product of the posterior distributions over all samples along the diagonal of µ̂q corresponding to the207

candidate overlap η208

P(µη; µ̂, n) =

η∏
b=1

{
P(µ̂a′,b;µ, n)p(µ)∫
P(µ̂a′,b;µ, n)p(µ)dµ

}
, (29)

where a′ = A− b+1 and the product is computed using a sum of log posterior functions to avoid numerical errors.209

The Bayes coherence estimate is computed by210

µ̄[η] =

∫
µP(µη; µ̂, n)dµ, (30)
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Fig. 5: The process of estimating the sub-sample

number of overlapping phase centres using Bayesian

coherence estimation. The dashed line represents

the underlying spatial coherence µ(η). The filled

dots show the same sample coherence estimates as

Figure 1b. Each of these samples has a likelihood

shown by dotted lines P(µ̂a′,b;µa′,b, n), and (29)

gives the product of these likelihoods (multiplied

by the prior and normalised), giving the overall

posteriors P(µη; µ̂, n) which are plotted as solid

lines. The likelihood and posterior distributions at

each spatial lag have been scaled for clarity of

display.The expected value of the posterior gives

the expected population coherence µ̄[η]. Finally, an

interpolation kernel is fitted to the three red crosses

representing the peak Bayes coherence estimate and

the adjacent samples, to give an estimate µ̄(η) of the

underlying coherence function.
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which is the expected value of the posterior distribution. An interpolation kernel can then be fitted to the largest211

coherence estimate and its adjacent samples, allowing an estimate of the location of the peak underlying coherence212

to be made. The process of Bayesian coherence estimation and subsequent interpolation is shown in Figure 5.213
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Fig. 6: Statistics of Bayesian coherence error removal, for signals with n = 120 independent samples. (a) Median

of Bayes coherence estimates, showing that the Bayes estimate is asymptotically unbiased. (b) Standard deviation

of Bayes coherence estimates. (c) The percentage reduction in coherence estimate bias achieved by the Bayesian

estimation method.

While Bayes estimators are in general asymptotically unbiased, they are not necessarily unbiased for a finite214

number of samples. The performance of the Bayes coherence estimator is demonstrated in Figure 6, which shows215

the bias and standard deviation of the Bayes coherence estimate as a function of population coherence and number216

of sample coherence realisations from a Monte Carlo simulation. This shows that both the residual bias and standard217

deviation of the the Bayes coherence estimate are reduced for larger numbers of sample coherence realisations, as218

expected for an asymptotically unbiased estimator. Extremely low residual bias is seen for most values of population219

coherence and number of sample coherence realisations, and over 90% bias reduction is achieved for all population220

coherence values above 0.175.221

IV. IMPROVED COHERENCE ESTIMATION INTERPOLATION KERNEL222

The van Cittert-Zernike theorem for a narrowband pulsed active sonar system derived by Brown [12] gives the223

zero-lag covariance of the field as224

γ12 ∝
∫
Ψ

β1(χ)β2(χ)σ(χ)Λ

(
χ,
t2 − t1

2
, t2 − t1

)
ejk(R1−R2)dχ, (31)

where the geometry is defined by Figure 7, t1 and t2 define the temporal interval over which the covariance is225

calculated, χ represents a point in the integration volume Ψ and226

Rm = ∥χtm − χ∥+ ∥χrm − χ∥ , m ∈ 1, 2 (32)
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Fig. 7: Geometry for the evaluation of (31) and (36), showing two successive pings. The acoustic field is transmitted

from positions χt1and χt2 , scattered by the region Ψ, and received at receiver positions χr1and χr2 . The two

highlighted receivers are selected to form the spatial coherence function in Figure 9a. The transducer arrays are

shown offset vertically for clarity.

gives the two-way propagation distances for successive pings indexed by m. The transducer directivity functions227

and spreading loss are gathered in the terms228

βm(χ) = α bTX(χ) bRX(χ) (33)

where bTX and bRX are the transmitter and receiver directivity functions respectively and229

α =
1

2π
(
Rm

2

)2 (34)

models spherical spreading loss. σ(χ) = σ0(χ)ξ(χ) is the spatially dependent scattering strength, which combines230

the bottom scattering strength projected onto the seafloor σ0(χ) and a multiplicative loss term ξ(χ). The masking231

function Λ confines the contributions to a finite volume on the seafloor via the function232

Λ(χ, t, τ) =



0, if 1
τ

∣∣t− 2
c |χ− χt1 |

∣∣ > 1
2

1
2 , if 1

τ

∣∣t− 2
c |χ− χt1 |

∣∣ = 1
2

1, if 1
τ

∣∣t− 2
c |χ− χt1 |

∣∣ < 1
2

(35)
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where c is the sound speed and τ is the temporal window length. The zero-lag covariance may be normalised to233

give the correlation coefficient, using234

µ12(t1, t2) =
γ12(t1, t2)√

γ11(t1, t2)γ22(t1, t2)
. (36)

χ

R1

R2

θ

x

θ

x

R
1
−
R
2

θ

Fig. 8: The geometry of a phase centre advancing

in the along-track x direction, showing the approx-

imation for the range difference R1 − R2 given in

(41) for a point χ at an angle θ from broadside.

Evaluating (31) and (36) allows the spatial coherence of the acoustic field to be predicted. Here, we seek a235

range-independent analytical approximation for the spatial coherence as a function of along-track motion between236

successive pings to use as an interpolation kernel. Making an assumption of constant variance γ11(t1, t2) and237

γ22(t1, t2) over the relevant domain of x, (36) reduces to238

µ12(t1, t2) ∝∼ γ12(t1, t2). (37)

The approximation of range independence is achieved by approximating the spreading loss α as a constant across239

the temporal window, and by neglecting the temporal masking function Λ. Making a further assumption of spatially240

constant seafloor scattering strength σ(χ) and constraining the sensor motion to the along-track direction we arrive241

at the expression242

µ12(x) ∝∼

∫
Ψ

(bTX (χ) bRX (χ))
2
ejk(R1−R2)dχ. (38)

In the far field, the phase centre approximation [30] can be used, which is applicable in this context when243

L2

4R

(
1− cos2

(
θ3dB

2

))
≪ 1 (39)

where L is the largest distance between the transmit and receive transducers, R is range and θ3 dB is the 3 dB width244

of the transmission beampattern. Combining this with a far-field approximation, valid in the Fraunhoffer region,245

R >
2x2

λ
, (40)
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the difference in range from a point to two phase centres can be approximated as246

R1 −R2 ≈ x sin (θ) , (41)

as shown in Figure 8, where θ = f(χ) is the angle from broadside and x is the along-track displacement between247

phase centres. For the design of rectangular transmit and receive transducers, we arrive at248

µ12(x) ∝∼

∫
Ψ

sinc (kLTX sin (θ))
2
sinc (kLRX sin (θ))

2
ejk sin(θ)xdχ, (42)

where LTX and LRX are the along-track lengths of the transmitter and receiver respectively. This can be interpreted

as the Fourier transform of the combined transducer beampattern squared, which, by the convolution theorem,

is the convolution of the squared transducer shading functions. For rectangular shading (i.e. sinc beampatterns)

this is equivalent to the convolution of two triangular functions, resulting in a cubic function. For a system with

LTX = κLRX, (42) has been evaluated using the Wolfram Engine [31] as

µ12(x) = µ0

(
− 2 |x− 2κLRX|3 + |x+ (2− 2κ)LRX|3 + |x+ (−2− 2κ)LRX|3 − 2 |x+ 2LRX|3 + 4 |x|3

− 2 |x− 2LRX|3 + |x+ (2 + 2κ)LRX|3 + |x+ (−2 + 2κ)LRX|3 − 2 |x+ 2κLRX|3
)

(43)

and for the design choice of κ = 1.5 (e.g. [32]) such that the first null of the transmitter beampattern coincides249

with the peak of the first sidelobe of the receiver beampattern, this results in the series [33]250

µ12(x) ∝∼
10∑
i=0

hi|x− (i− 5)LRX|3, (44)

where h = [1, 0,−2,−2, 1, 4, 1,−2,−2, 0, 1].251

An improved interpolation kernel can be formulated based on (43) or (44) by replacing x with x − ζ and LRX252

with w, where ζ is the peak offset and w is the kernel width. We refer to this as the cubic kernel. We consider a253

system with κ = 1.5 in the following and the resulting interpolation kernel takes the form254

µ(x) = µ0

10∑
i=0

hi |x− ζ − (i− 5)w|3 (45)

where µ0 is the peak coherence and w is the kernel width. In the following section we compare this to the Gaussian255

interpolation kernel proposed in [14], which takes the form256

µ(x) = µ0 exp

{
−1

2

(x− ζ)2

σ2

}
(46)

where σ defines the kernel width.257

A. Interpolation Kernel Comparison258

The quality of fit of the Gaussian and cubic interpolation kernels is now compared to the spatial coherence259

function predicted by (36). We consider specific elements of a SAS with a receiving array consisting of 12 elements260

performing two successive pings, operating with centre frequency fc = 300 kHz, bandwidth B = 60 kHz, sound261

speed c = 1500m/s, transmitter and receiver lengths LTX = 50mm and LRX = 33mm respectively, and altitude262

H = 10m. The geometry of the SAS closely mimics the Minehunting UUV for Shallow water Covert Littoral263
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Fig. 9: (a) The spatial coherence function predicted by (36), as a function of ground range, for system parameters

matching those of the MUSCLE SAS. (b) A slice through (a) at y = 30m, with the best-fitting quadratic, Gaussian

and cubic kernels for comparison. (c) The error between the van Cittert-Zernike simulation and the best-fitting

quadratic, Gaussian and cubic kernels. (d,e,f) The fit error for the quadratic, Gaussian and cubic interpolation

kernels respectively. Note the colour axis is compressed by a factor of 10 in (e,f) compared to (d).

Expeditions (MUSCLE) SAS [32] operating in interferometric mode with a receiver array of 12 elements spaced264

at ∆ = 33mm and an along-track advance between pings of265

∆t1
t2 = (9 + ζ)

∆

2
, (47)

where ζ is the along-track offset in phase centres between the phase centre arrays formed by the foremost and266

aftmost 3 phase centres of adjacent pings. The along-track distance between the transmitter and the ’fore’ phase267

centre array is ∆t1
r1= 850mm and between the transmitter and the ‘aft’ phase centre array is ∆t2

r2= 553mm, as268

shown in Figure 7.269

We evaluate (31) and (36) for an infinite horizontal plane over the domain −1.5 ≤ ζ ≤ 1.5, which is the range

of phase centre offsets over which samples are drawn to fit the interpolation kernel, and 10m ≤ y ≤ 150m, which

July 7, 2021 DRAFT



17

is a reasonable swath for a modern SAS. The beampatterns βm are evaluated for unshaded rectangular apertures,

the scattering strength σ(χ) is assumed to be constant over each temporal window, and the temporal limits for the

masking function are given by

t1 =2

√
y2 +H2

c
− n

2B
(48)

t2 =2

√
y2 +H2

c
+

n

2B
, (49)

where the number of independent samples in the temporal window n = 120, which corresponds to a spatial window270

length of 1.5m. This results in the spatial coherence function µ1,2(x, y) shown in Figure 9a.271

At each value of ground range yi, we now fit the Gaussian kernel (46) by performing the least-squares minimi-272

sation273

[µ̂0, σ̂, ζ̂] = argmin

{∑
x

(
µ0 exp

{
−1

2

(x− ζ)2

σ2

}
− µ12(x, y)

)2
}

(50)

and finding the fit error as a function of RPC offset using274

ϵg(x, y) = µ̂0 exp

{
−1

2

(x− ζ̂)2

σ̂2

}
− µ12(x, y), (51)

which is shown in Figure 9e. We perform the same procedure for the cubic kernel, finding the optimal parameter275

values by the least-squares minimisation276

[µ̂0, ŵ, ζ̂] = argmin

{∑
x

(
µ0

10∑
i=0

hi |x− ζ − (i− 5)w|3 − µ12(x, y)

)2
}
, (52)

and finding the fit error by277

ϵv(x, y) = µ̂0

10∑
i=0

hi|x− ζ̂ − (i− 5)ŵ|3 − µ12(x, y), (53)

which is shown in Figure 9f. This indicates that the cubic kernel offers a significantly improved fit compared to the278

Gaussian kernel. Figure 9 also includes equivalent results from a quadratic kernel, for consistency and comparison279

with Fig. 4 of [14].280

V. SIMULATION RESULTS281

The effect of the along-track micronavigation bias reduction methods presented in Sections III and IV is now282

demonstrated using two independent Monte Carlo simulation methods. Section V-A describes the use of these283

simulations to quantify the expected bias and standard deviation of along-track micronavigation estimates as a284

function of the number of overlapping phase centres, using all combinations of the bias reduction methods. Having285

quantified these biases and standard deviations, we then evaluate the navigation error as a function of distance286

travelled for a set of random walks covering a variety of possible operating characteristics in Section V-B.287

The first simulation method involves using the van Cittert-Zernike theorem to predict the population coherence288

between phase centre pairs, and simulating biased coherence samples by randomly drawing samples from the289

probability distribution for sample coherence given by (20). These simulations allow investigation of the effect290

of Bayesian coherence estimation and the improved interpolation kernel. However, since this simulation directly291
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simulates coherence under the assumption that the redundant signals are perfectly temporally registered, the effect292

of the temporal registration method is not investigated. Therefore, a point-scatterer simulation similar in type to293

[34] has also been used which generates simulated echo data for a given geometry. While this simulation method294

is more realistic, it is still highly idealised, with a perfectly linear vehicle trajectory at an altitude of 10m above a295

flat, horizontal seafloor. The geometry of the SAS used in both simulations closely replicates that of the MUSCLE296

system operating in interferometric mode, as in Section IV-A. This geometry results in a correlation between297

adjacent sample covariance estimates (those from which the elements of the matrix of sample coherences µ̂q are298

derived) of 0.18, which we consider to be sufficiently small to allow coherence estimates from adjacent phase centre299

pairs to be approximated as independent. The seafloor is represented by a collection of in-plane point-scatterers,300

where each ideal resolution cell contains a number of randomly distributed points drawn from a negative binomial301

distribution [35] with mean 10 and success probability 0.5. The beampatterns for each transducer are calculated302

at the centre frequency of 300 kHz assuming rectangular apertures with no shading. The effect of spreading loss303

is not modelled, since practical SAS systems typically apply a range-varying gain on reception, and the change304

in signal-to-noise ratio (SNR) over individual temporal windows is expected to be negligible. After summing the305

beampattern-weighted response over all scatterers, the SNR is reduced to 30 dB using additive white Gaussian noise.306

Using the point-scatterer simulation allows the full processing chain to be implemented from received echo signals307

through to along-track micronavigation estimates. Using this simulation method, the effect of temporal registration,308

Bayesian coherence estimation and the improved interpolation kernel can all be investigated and quantified.309

A. Bias and standard deviation of along-track micronavigation estimates310

Figure 10 shows the median and standard deviation of the along-track micronavigation estimates for both311

simulation methods. Consider first Figure 10a, which shows the median advance per ping error for a range of312

true advances, shown as the number of overlapping phase centres per ping. Using all of the potential combinations313

of methods, a periodic error is seen that repeats every integer number of overlapping phase centres, which crosses314

its median value at every multiple of 0.5 phase centres.315

The results derived from the point scatterer simulation without temporal registration reveals an offset in median316

error that is approximately constant as a function of the number of overlapping phase centres. The median error317

without temporal registration varies around approximately 0.003 phase centre spacings, but with the temporal318

registration this offset is virtually eliminated. Furthermore, the median errors resulting from the point simulation319

with temporal registration show close correspondence with those from the van Cittert-Zernike simulation.320

We now consider the impact of Bayesian coherence estimation and the choice of interpolation kernel. Consider first321

the median error using the Gaussian kernel. The Bayes coherence estimator increases the maximum absolute error322

by over 50%. This suggests that the Gaussian interpolation kernel is a better fit to the biased sample coherences than323

those with the coherence bias compensated for. Using the empirically derived cubic kernel with the conventional324

estimator results in a modest reduction in maximum absolute error of around 20% compared to the standard325

estimator with the Gaussian kernel, which is considered to be the current gold standard. However, using the Bayes326

estimator and the cubic kernel improves this further, with a reduction in maximum absolute error of up to 80%.327
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Fig. 10: (a) The median and (b) standard deviation of the along-track micronavigation estimate from both the point

simulation and the van Cittert-Zernike simulations. The ‘standard’ estimator refers to taking the mean coherence

over diagonals of the matrix of individual coherence estimates as in (10), rather than the Bayesian approach of

(29).
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Fig. 11: The distribution of the number of overlapping phase centres for the 6 random walks considered.

This improvement is most significant with a larger number of overlapping phase centres per ping. This is expected328

because more overlapping phase centres results in more coherence samples in the Bayes estimator. The reduced329

residual bias with more independent samples is demonstrated in Figure 6a.330

The standard deviation of the error is shown in Figure 10b, which shows good correspondence between the331

simulation methods. The error standard deviation is reduced in all cases with more overlapping phase centres332

between pings and when the phase centres are half overlapping in all cases. The standard deviation of the advance333

per ping error is similar for all of the bias reduction methods. However, there is a noticeable disparity between the334

simulated error standard deviation derived from the point simulator and the van Cittert-Zernike simulator.. This is335

likely to be because the Monte Carlo draws from (20) are independent, but the sample coherences estimated between336

adjacent phase centre pairs are correlated with correlation coefficient 0.18. Additionally, the random distribution of337

point-scatterers may not result in perfectly zero-mean circular Gaussian distributed signals. Nevertheless, the error338

standard deviation follows a similar pattern for both simulators, with reducing standard deviation with more overlap339

between pings. This is to be expected, since more redundant data is available when there is greater overlap between340

pings. Overlaid on this trend is a variation in standard deviation with local minima occurring at the locations of341

maximal phase centre misalignment (4.5, 3.5, 2.5 overlapping phase centres).342

The implication of Figure 10 is that along-track micronavigation bias can be reduced by adjusting the vehicle343

speed or ping rate such that the number of overlapping phase centres is a multiple of 0.5. Furthermore, the standard344

deviation of along-track micronavigation estimates can be reduced when phase centres are maximally misaligned.345

In the following, we investigate the attainable along-track navigation performance for SAS systems by simulating346

the along-track micronavigation error as a function of distance travelled for a range of operating conditions.347

B. Micronavigation error evaluation using random walks348

In this section, we consider the accumulation of along-track navigation error as a function of distance travelled,349

for a range of possible operating scenarios. We do so by simulating 1 × 106 Monte Carlo uncorrelated random350

walks of 1000m in length, where the number of overlapping phase centres between each ping pair is drawn from351

a Gaussian distribution with mean µw and standard deviation σw. The error introduced on each ping pair is drawn352
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(a) µw = 4.00 phase centres, σw = 0.04 phase centres

(b) µw = 3.75 phase centres, σw = 0.04 phase centres

(c) µw = 3.50 phase centres, σw = 0.04 phase centres

Fig. 12: End-of-track error distributions after 1000m random walks, for systems with 1% variability in overlapping

phase centres between adjacent pings.
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(a) µw = 4.00 phase centres, σw = 0.40 phase centres

(b) µw = 3.75 phase centres, σw = 0.40 phase centres

(c) µw = 3.50 phase centres, σw = 0.40 phase centres

Fig. 13: End-of-track error distributions after 1000m random walks, for systems with 10% variability in overlapping

phase centres between adjacent pings.
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(a) Systems with 1% variability in overlapping phase centres
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(b) System with 10% variability in the number of overlapping phase centres (Note mean error axis is dilated by a factor of 2 compared to (a))

Fig. 14: Summary of the mean and standard deviation of the end-of-track errors for selected values of the mean

µw and standard deviation σw of the true number of overlapping phase centres between pings.

July 7, 2021 DRAFT



24

from the distributions shown in Figure 10. We investigate two cases for the standard deviation of the distribution,353

representing low and high variability in the number of overlapping phase centres. Considering a nominal inter-ping354

overlap of 4 phase centres, σw = 0.04 phase centres and σw = 0.4 phase centres represent standard deviations of 1%355

and 10% respectively. The low variability distribution may be representative of SAS systems operating with variable356

ping rate, where the inter-ping overlap is controlled by altering the ping rate as a function of along-track velocity357

measured by an onboard sensor such as a DVL. The high variability distribution may represent SAS systems with a358

constant ping rate, with the along-track velocity of the platform controlled with the goal of achieving µw overlapping359

phase centres. The three values of {µw ∈ [4.00, 3.75, 3.50]} phase centres are used for both of these system types.360

These parameters are chosen to represent maximal phase centre overlap (a common choice in practice), a likely361

worst case scenario resulting from potential errors in ping rate control or vehicle velocity control, and maximal362

misalignment of phase centres in order to minimise the error standard deviation and bias as proposed in Section363

V-A.364

Figures 12 and 13 show the distribution of end-of-track error for each random walk, with along-track motion365

estimated by each possible combination of the presented bias reduction methods, for the variable and constant ping366

rate cases respectively. These figures are summarised in Figure 14, where the means and standard deviations of the367

end-of-track errors are plotted. The black lines and markers denote the current gold standard method, which does368

not include temporal registration or Bayesian coherence estimation, and uses a Gaussian interpolation kernel. The369

orange lines and markers denote the proposed method, with temporal registration, Bayesian coherence estimation370

and the cubic interpolation kernel. Consider the results for low variability in inter-ping overlap in Figure 12 and371

summarised in Figure 14a. When the phase centres are either maximally overlapping or misaligned between pings372

{µw ∈ [4.00, 3.50]}, the temporal registration significantly reduces the mean error and has minimal effect on error373

standard deviation. However, in the case of µw = 3.75 phase centres, this is only true when the cubic kernel is374

used. The reason for this is visible in Figure 10a; in the vicinity of 3.75 overlapping phase centres, the temporal375

registration reduces the bias for the cubic kernel, but increases it for the Gaussian kernel. Considering the high376

variability case in Figures 13 and summarised in 14b, a drastic reduction in mean end-of-track error is seen in all377

cases when the temporal registration is applied. Furthermore, using the Bayesian coherence estimation and cubic378

interpolation kernel, the standard deviation of the end-of-track error is also significantly reduced.379

The percentage improvements in the mean and standard deviation of the end-of-track errors for each of the380

random walks when comparing the gold standard method with the proposed method are given in Table II, with381

the comparison made against results of the proposed method derived from both the point-scatterer and van-Cittert382

Zernike simulations. For the low variability case, we demonstrate reductions in mean end-of-track error of at least383

48.5%, with minimal effect on the error standard deviation. In the high variability case, we demonstrate a reduction384

in end-of-track error of at least 79.8%, while also reducing the error standard deviation by approximately 30%.385

VI. CONCLUSION AND FURTHER WORK386

Three methods for reducing the bias in along-track micronavigation have been developed and evaluated using387

simulated raw echo data from a point-scatterer simulation and simulated coherence estimates using the pulse-388
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Reduction in mean

end-of-track error (%)

Reduction in end-of-track error

standard deviation (%)

Comparison

simulation
Point scatterer

van-Cittert

Zernike
Point scatterer

van-Cittert

Zernike

µw σw

High

variability

4.00 0.04 99.5 87.0 2.7 -14.5

3.75 0.04 57.9 48.5 -0.5 -12.8

3.50 0.04 90.8 82.8 10.9 18.6

Low

variability

4.00 0.40 97.0 85.9 34.0 30.4

3.75 0.40 97.2 79.8 31.5 29.2

3.50 0.40 95.3 81.2 29.4 29.3

TABLE II: A summary of the percentage reduction in the mean and standard deviation of the end-of-track error,

comparing the gold standard method to the proposed error reduction methods across all random walks considered

and against both point scatterer and van-Cittert Zernike simulation methods.

echo formulation of the van-Cittert Zernike theorem. The bias reduction methods developed comprise a temporal389

registration of redundant signals prior to coherence estimation, Bayesian coherence estimation, and the use of an390

improved interpolation kernel. Combined, these methods are shown to reduce along-track micronavigation bias391

by 48.5 - 99.5%, while reducing the error standard deviation by up to 34%. However, in this study the effect of392

non-ideal geometries such as inter-ping motion normal to the array axis and relative inclination of the seafloor have393

been neglected, and only flat seafloors with scattering amplitudes drawn from a negative binomial distribution have394

been considered. Therefore, further work is required in order to investigate these potential bias sources and fully395

realise the navigation potential of SAS systems.396

Nevertheless, the new bias reduction methods described in this paper are an important development towards397

enabling SAS systems to be used as effective, high precision and accuracy aiding sensors for navigation of398

AUVs. This will enable longer underwater transits, improved geolocation accuracy of seafloor imagery, and allow399

repeated passes to be made with greater accuracy for improved coherent change detection. Furthermore, the temporal400

registration, Bayesian coherence estimation and improved interpolation kernel described have potential to be adapted401

to improve the performance of conventional downward-looking CVL systems.402
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