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Statistics of an Autoregressive Correlated
Random Walk along a Return Path

A. J. Hunter and W. A. Connors

A closed-form analytical solution is derived for the statistical outcome
of a random walk along a return path. The random walk is generated
from the cumulative sum of correlated samples in a Gaussian-distributed
autoregressive sequence. The outcome exhibits a smaller variance
compared to a one-way path of equivalent length due to cancellation of
correlated steps along the return leg. Furthermore, the variance decreases
towards zero as the correlation coefficient approaches unity. An example
application for this general result is the modelling of cumulative errors
in dead-reckoning navigation systems, e.g., Doppler velocity log-aided
inertial navigation systems used commonly on underwater vehicles. In
this particular application, it can be used to express and quantify the
natural cancellation of correlated error components between subsequent
opposing legs in a typical “lawnmower” survey pattern.

Autoregressive Correlated Random Walk: Many processes occurring in
engineering can be modelled by the accumulation of samples from
an autoregressive correlated sequence driven with uncorrelated (white)
Gaussian noise; this is a type of random walk. Consider the outcome of a
random walk of n steps from the origin X0 = 0 with a mean step size µ,

Xn = nµ+

n∑
m=1

Um. (1)

For each step m, the correlated deviation Um from the mean is generated
by the iteration [?]

Um = ρ Um−1 +
[
σ
√

1− ρ2
]
Wm, (2)

where ρ∈R, [0, 1] is the correlation coefficient (quantifying the
similarity between each step) and Wm, U0 ∼N {0, σ} are uncorrelated
Gaussian-distributed random variables with zero mean and variance σ2.

Statistics for a One-Way Path: The statistical distribution P (Xn) of
outcomes for the random walk is illustrated in Figure 1(a). The mean
outcome is simply E {Xn}= nµ. The variance can be derived following
the approach of Bazant [?, Lecture 9] beginning with the expectation

σ2
Xn

= E
{

(Xn − nµ)2
}

=

n∑∑
m1,m2=1

E {Um1Um2} . (3)

The term inside the summation is the covariance Cm1,m2 between
correlated samples of the sequence (2) at steps m1 and m2. Thus, (3)
can be rewritten as

σ2
Xn

=

n∑∑
m1,m2=1

Cm1,m2 . (4)

Assuming stationarity, the covariance is dependent on the separationm=

|m2 −m1| only and the covariance values over the entire path can be
described by the symmetric n× n covariance matrix

C =


C0 C1 . . . Cn−1

C1 C0 . . . Cn−2

...
...

. . .
...

Cn−1 Cn−2 . . . C0

 , (5)

where the single subscript denotes the separation. The common terms
along the diagonals of (5) can be grouped, allowing the double
summation in (4) to be reduced to a single summation

σ2
Xn

= nC0 + 2

n−1∑
m=1

(n−m)Cm. (6)

The covariance for the autoregressive sequence (2) is given by

Cm = σ2ρm. (7)

(a)

(b)

Fig. 1 Statistical distributions of (a) positions Xn and X2n after n and 2n
steps of a random walk along a one-way path; and (b) position Y2n,p after
two legs of n steps each along a return path and with a pause of p steps
between legs.

Substituting (7) into (6) and rearranging then gives

σ2
Xn

=−nσ2 + 2σ2

[
n

n−1∑
m=0

ρm −
n−1∑
m=0

mρm

]
. (8)

Finally, the two summations can be recognised as a geometric series

Sn (ρ) =

n−1∑
m=0

ρm =
1− ρn

1− ρ
(9)

and a function of its derivative

ρ ·
d

dρ
Sn (ρ) =

n−1∑
m=0

mρm = ρ ·
1− ρn − nρn−1 (1− ρ)

(1− ρ)2
. (10)

Substituting for these series and rearranging yields the closed-form
solution

σ2
Xn

= σ2 ·
n
(
1− ρ2

)
− 2ρ (1− ρn)

(1− ρ)2
. (11)

Statistics for a Return Path: Now consider a random walk along a return
path with n steps in one direction followed by another n) steps in the
opposite direction. Consider also a possible pause of p steps between
each of these legs. (For our underwater navigation application, this pause
concerns a maneuver through 180 deg in preparation for the return leg.)
The walk along the return path can be expressed by

Y2n,p =

n∑
m=1

Um −
2n+p∑

m=n+p+1

Um (12)

and the statistical distribution of outcomes P (Y2n,p) in the world frame
is illustrated in Figure 1(b).

The mean outcome is simply a return to the origin, E {Y2n,p}= 0. The
variance can be derived by following a procedure similar to that used for
the one-way path, beginning with the expectation

σ2
Y2n,p

= E
{

(Y2n,p)2
}
. (13)

Expanding this gives

σ2
Y2n,p

=

n∑∑
m1,m2=1

E {Um1Um2}+

2n+p∑∑
m1,m2=n+p+1

E {Um1Um2}

− 2

n, 2n+p∑∑
m1=1, m2=n+p+1

E {Um1Um2} .

(14)

The expectations in (14) can be replaced by covariances. Moreover, each
of the first two terms can be recognised as the variance for a one-way
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path (11), i.e.,

σ2
Y2n,p

= 2 σ2
Xn
− 2

n, 2n+p∑∑
m1=1, m2=n+p+1

Cm1,m2 . (15)

Again, assuming stationary, the covariance values over the entire path can
be described by the symmetric (2n+ p)× (2n+ p) covariance matrix,

C =


. .
.

Cp+n . . . Cp+2 Cp+1

Cp+n+1 . . . Cp+3 Cp+2

... . .
. ...

...

Cp+2n−1 . . . Cp+n+1 Cp+n

 . (16)

The terms in the bottom-left n× n portion of this matrix correspond to
the terms in the double summation of (15). The common terms on the
diagonals can be grouped to reduce this to a single summation

σ2
Y2n,p

= 2 σ2
Xn
− 2

n−1∑
m=0

[
mCp+m + (n−m)Cp+n+m

]
. (17)

Substituting (7) into (17) and rearranging gives

σ2
Y2n,p

= 2 σ2
Xn
− 2σ2ρp

[
nρn

n−1∑
m=0

ρm + (1− ρn)

n−1∑
m=0

mρm

]
.

(18)
Finally, the summations in (18) can be recognised as the series (9) and
(10). Making these substitutions and rearranging yields the closed-form
solution

σ2
Y2n,p

= 2σ2 ·
n
(
1− ρ2

)
− ρ (1− ρn) [2 + ρp (1− ρn)]

(1− ρ)2
(19)

for the variance of the outcome after a correlated random walk along a
return path.

Results: We validate the expressions (11) for the one-way path and (19)
for the return path by comparing them with Monte-Carlo simulations. We
also explore the general trends with respect to the correlation properties
and duration of the walk. For equivilence, we consider a total of 2n steps
for both the one-way and return paths, as illustrated in Figure 1.

The correlation properties can be expressed independently from the
sample rate by considering the exponential time constant τ , i.e.,

ρ= exp (−∆t/τ) , (20)

where ∆t is the time period between steps. The time constant τ can then
be normalised with respect to the duration of a one-way leg in the return
path, i.e.,

τ̄ = τ/ (n∆t) . (21)

The variances of the random walk outcomes can also be normalised with
respect to the variance for the same random walk with uncorrelated steps,
i.e.,

σ̄2
X2n

= σ2
X2n

/
(2n σ2) , (22)

σ̄2
Y2n,p

= σ2
Y2n,p

/
(2n σ2) . (23)

The expressions for the normalised variance are plotted in Figure 2
with respect to the normalised time constant for a varying number
of steps. Monte-Carlo simulations were used to validate these results
and examples are shown for n= 1000, p= 0 and n= 1000, p= 1000 to
demonstrate the agreement with the closed-form expressions.

Both one-way and return paths exhibit the same trends for small time
constants, tending to a normalised variance of one as τ̄ tends to zero. The
trends are different for time constants comparable to or greater than the
duration of a one-way leg. As τ̄ exceeds unity, the normalised variance
of the one-way path approaches a limit of 2n, whereas the variance of the
return path tends towards zero.

Conclusion and Discussion: The novel contribution of this work is the
closed-form analytical solution (19) for the variance of a correlated
random walk along a return path. This generalised result has been
visualised in Figure 2(b) and (c). It can be applied to a number of
problems in engineering. However, the authors’ particular interest is the
modelling of error accumulation in dead-reckoning navigation systems

(a) One-way path

(b) Return path, p= 0

(c) Return path, n= 1000

Fig. 2 Normalised variance in position after a random walk with correlated
steps for (a) a one-way path of 2n steps and (b,c) a return path with two
legs of n steps each and a pause of p steps between legs. The variance is
normalised by an equivalent walk with uncorrelated steps and the correlation
is expressed as a time constant that is normalised to the duration of one leg in
the return path.

– specifically, Doppler velocity log-aided inertial navigation systems
used commonly on underwater vehicles. The expression explains the
observation that correlated errors in the velocity measurements with time
constants on order of the duration of a leg (or more) result in partial
cancellation of the errors in subsequent opposing legs [?]. Furthermore,
it provides a quantifiable prediction of this effect.
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