11 research outputs found

    Aerodynamic pressure and heating-rate distributions in tile gaps around chine regions with pressure gradients at a Mach number of 6.6

    Get PDF
    Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients

    Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    Get PDF
    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans

    11. SUPPLEMENTARY NOTES 5. FUNDING NUMBERS

    No full text
    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thi

    Axial compression corner flow with shock impingement

    No full text

    Utility of Extinction-induced Response Variability for the Selection of Mands

    No full text
    Functional communication training (FCT; Carr & Durand, 1985) is a commonly used differential reinforcement procedure for replacing problem behavior with socially acceptable alternative responses. Most studies in the FCT literature consist of demonstrations of the maintenance of responding when various treatment components (e.g., extinction, punishment) are present and absent (e.g., Fisher et al., 1993; Wacker et al., 1990). Relatively little research on FCT has (a) evaluated the conditions under which alternative responses are acquired or (b) described procedures with technological precision. Thus, additional research on a cogent technology for response acquisition appears to be warranted. In the current study, we evaluated the efficacy of exposing problem behavior to extinction for inducing response variability as a tool for selecting an alternative response during FCT. Once participants engaged in appropriate alternative responses, the reinforcer identified in the functional analysis as maintaining problem behavior was delivered contingent on the alternative behavior. Results showed that exposing problem behavior to extinction was a useful method for producing alternative behaviors during FCT
    corecore