11,092 research outputs found

    West End of Newcastle Labour Market Study

    Get PDF

    The Adaptive Priority Queue with Elimination and Combining

    Full text link
    Priority queues are fundamental abstract data structures, often used to manage limited resources in parallel programming. Several proposed parallel priority queue implementations are based on skiplists, harnessing the potential for parallelism of the add() operations. In addition, methods such as Flat Combining have been proposed to reduce contention by batching together multiple operations to be executed by a single thread. While this technique can decrease lock-switching overhead and the number of pointer changes required by the removeMin() operations in the priority queue, it can also create a sequential bottleneck and limit parallelism, especially for non-conflicting add() operations. In this paper, we describe a novel priority queue design, harnessing the scalability of parallel insertions in conjunction with the efficiency of batched removals. Moreover, we present a new elimination algorithm suitable for a priority queue, which further increases concurrency on balanced workloads with similar numbers of add() and removeMin() operations. We implement and evaluate our design using a variety of techniques including locking, atomic operations, hardware transactional memory, as well as employing adaptive heuristics given the workload.Comment: Accepted at DISC'14 - this is the full version with appendices, including more algorithm

    The HI content of extremely metal-deficient blue compact dwarf galaxies

    Get PDF
    We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely metal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    K3-fibered Calabi-Yau threefolds I, the twist map

    Full text link
    A construction of Calabi-Yaus as quotients of products of lower-dimensional spaces in the context of weighted hypersurfaces is discussed, including desingularisation. The construction leads to Calabi-Yaus which have a fiber structure, in particular one case has K3 surfaces as fibers. These Calabi-Yaus are of some interest in connection with Type II -heterotic string dualities in dimension 4. A section at the end of the paper summarises this for the non-expert mathematician.Comment: 31 pages LaTeX, 11pt, 2 figures. To appear in International Journal of Mathematics. On the web at http://personal-homepages.mis.mpg.de/bhunt/preprints.html , #

    Benjamin-Ono Kadomtsev-Petviashvili’s models in interfacial electro-hydrodynamics

    Get PDF
    Three-dimensional nonlinear potential free surface flows in the presence of vertical electric fields are considered. Both the effects of gravity and surface tension are included in the dynamic boundary condition. An asymptotic analysis (based on the assumptions of small depth and small free surface displacements) is presented. It is shown that the problem can be modelled by a Benjamin-Ono Kadomtsev-Petviashvili equation. Furthermore a fifth order Benjamin-Ono Kadomtsev-Petviashvili equation is derived to describe the flows in the particular case of values of the Bond number close to 1/3

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page
    • 

    corecore