24,355 research outputs found
Coherent structures: Comments on mechanisms
There is now overwhelming evidence that in most turbulent flows there exist regions moving with the flow where the velocity and vorticity have a characteristic structure. These regions are called coherent structures because within them the large-scale distributions of velocity and/or vorticity remain coherent even as these structures move through the flow and interact with other structures. Since the flow enters and leaves the bounding surfaces of these structures, a useful definition for coherent structures is that they are open volumes with distinctive large-scale vorticity distributions. Possible fruitful directions for the study of the dynamics of coherent structures are suggested. Most coherent structures research to data was concentrated on measurement and kinematical analysis; there is now a welcome move to examine the dynamics of coherent structures, by a variety of different methods. A few of them will be described
Granular Flow in a Vertically Vibrating Hopper
The behavior of the flow of glass spheres in a vertically vibrating hopper is examined. A two-dimensional hopper is mounted on a shaker that provides sinusoidal, vertical vibrations. Both the frequency and amplitude of the vibrations are adjustable. Hopper discharge rates and flow patterns are measured as the acceleration amplitude of the vibrations is increased from 0 to 4g's. Comparisons are made with unvibrated hopper flows and with a two-dimensional discrete element simulation model
Aerothermal tests of spherical dome protuberances on a flat plate at a Mach number of 6.5
Aerothermal tests were conducted in the Langley 8-Foot High-Temperature Tunnel at a Mach number of 6.5 on a series of spherical dome protuberances mounted on a flat-plate test apparatus. Detailed surface pressure and heating-rate distributions were obtained for various dome heights and diameters submerged in both laminar and turbulent boundary layers including a baseline geometric condition representing a thermally bowed metallic thermal protection system (TPS) tile. The present results indicated that the surface pressures on the domes were increased on the windward surface and reduced on the leeward surface as predicted by linearized small-perturbation theory, and the distributions were only moderately affected by boundary-layer variations. Surface heating rates for turbulent flow increased on the windward surface and decreased on the leeward surface similar to the pressure; but for laminar boundary layers, the heating rates remained high on the leeward surface, probably due to local transition. Transitional flow effects cause heat load augmentation to increase by 30 percent for the maximum dome height in a laminar boundary layer. However, the corresponding augmentation for a dome with a height of 0.1 in. and a diameter of 14 in. representative of a bowed TPS tile was 14 percent or less for either a laminar or turbulent boundary layer
Revisiting the 1954 Suspension Experiments of R. A.Bagnold
In 1954 R. A. Bagnold published his seminal findings on the rheological properties of a liquid-solid suspension. Although this work has been cited extensively over the last
fifty years, there has not been a critical review of the experiments. The purpose of this study is to examine the work and to suggest an alternative reason for the experimental findings. The concentric cylinder rheometer was designed to measure simultaneously the shear and normal forces for a wide range of solid concentrations, fluid viscosities and shear rates. As presented by Bagnold, the analysis and experiments demonstrated that the shear and normal forces depended linearly on the shear rate in the 'macroviscous' regime; as the grain-to-grain interactions increased in the 'grain-inertia' regime, the stresses depended on the square of the shear rate and were independent of the fluid viscosity. These results, however, appear to be dictated by the design of the experimental facility. In Bagnold's experiments, the height (h) of the rheometer was relatively short compared to the spacing (t) between the rotating outer and stationary inner cylinder (h/t=4.6). Since the top and bottom end plates rotated with the outer cylinder, the flow contained two axisymmetric counter-rotating cells in which flow moved outward along the end plates and inward through the central region of the annulus. At higher Reynolds numbers, these cells contributed significantly to the measured torque, as demonstrated by comparing Bagnold's pure-fluid measurements with studies on laminar-to-turbulent transitions that pre-date the 1954 study. By accounting for the torque along the end walls, Bagnold's shear stress measurements can be estimated by modelling the liquid-solid mixture as a Newtonian fluid with
a corrected viscosity that depends on the solids concentration. An analysis of the normal stress measurements was problematic because the gross measurements were not reported and could not be obtained
Effects of horizontal vibration on hopper flows of granular materials
The current experiments investigate the discharge of glass spheres in a planar wedge-shaped hopper (45 degree sidewalls) that is vibrated hoizontally. When the hopper is discharged without vibration, the discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With horizontal vibration, the discharge rate increases with the velocity of vibration as compared with the discharge rate without vibration. For a certain range of acceleration parameters (20-30 Hz and accelerations greater than about 1 g), the discharge of the material occurs in an inverted-funnel pattern, with the material along the sides exiting first, followed by the material in the core; the free surface shows a peak at the center of the hopper with the free surface particles avalanching from the center toward the sides. During the deceleration phase of a vibration cycle, particles all along the trailing or low-pressure wall separate from the surface and fall under gravity for a short period before reconnecting the hopper. For lower frequencies (5 and 10 Hz), the free surface remains horizontal and the material appears to discharge uniformly from the hopper
Aerothermal tests of a 12.5 percent cone at Mach 6.7 for various Reynolds numbers, angles of attack and nose shapes
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness
Asymptotic Multi-Layer Analysis of Wind Over Unsteady Monochromatic Surface Waves
Asymptotic multi-layer analyses and computation of solutions for turbulent
flows over steady and unsteady monochromatic surface wave are reviewed, in the
limits of low turbulent stresses and small wave amplitude. The structure of the
flow is defined in terms of asymptotically-matched thin-layers, namely the
surface layer and a critical layer, whether it is elevated or immersed,
corresponding to its location above or within the surface layer. The results
particularly demonstrate the physical importance of the singular flow features
and physical implications of the elevated critical layer in the limit of the
unsteadiness tending to zero. These agree with the variational mathematical
solution of Miles (1957) for small but finite growth rate, but they are not
consistent physically or mathematically with his analysis in the limit of
growth rate tending to zero. As this and other studies conclude, in the limit
of zero growth rate the effect of the elevated critical layer is eliminated by
finite turbulent diffusivity, so that the perturbed flow and the drag force are
determined by the asymmetric or sheltering flow in the surface shear layer and
its matched interaction with the upper region. But for groups of waves, in
which the individual waves grow and decay, there is a net contribution of the
elevated critical layer to the wave growth. Critical layers, whether elevated
or immersed, affect this asymmetric sheltering mechanism, but in quite a
different way to their effect on growing waves. These asymptotic multi-layer
methods lead to physical insight and suggest approximate methods for analyzing
higher amplitude and more complex flows, such as flow over wave groups.Comment: 20 page
Effects of Horizontal Vibration on Hopper Flows of Granular Material
This study experimentally examines the flow of glass spheres in a wedge-shaped hopper that is vibrated hoizontally. When the hopper is discharged without vibration, discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With vibration, the discharge of the material occurs in reverse, with the material along the sides exiting first, followed by the material in the central region. These patterns are observed with flow visualization and high-speed photography. The study also includes measurements of the discharge rate, which increases with the amplitude of the velocity of vibration
The structure of sheared turbulence near a plane boundary
An analysis is presented of how a plane boundary affects the structure of turbulence in a sheared free stream. A uniform-shear boundary layer (USBL) is formulated with slip velocity condition at the surface, and inhomogeneous rapid distortion theory is applied. The effects of blocking by the surface on the turbulence structure in USBL is compared with those in the shear-free boundary layer (SFBL). Shear produces highly anisotropic eddies elongated in the flow direction. The vertical velocity variance is reduced with shear at all heights, roughly in proportion to the reduction in the homogeneous value, but the shape of the profile remains unchanged only near the surface. The streamwise integral scales increase with shear, indicating elongation of the streamwise extent of eddies
- …