1,232 research outputs found

    Pseudodifferential operator calculus for generalized Q-rank 1 locally symmetric spaces, I

    Get PDF
    This paper is the first of two papers constructing a calculus of pseudodifferential operators suitable for doing analysis on Q-rank 1 locally symmetric spaces and Riemannian manifolds generalizing these. This generalization is the interior of a manifold with boundary, where the boundary has the structure of a tower of fibre bundles. The class of operators we consider on such a space includes those arising naturally from metrics which degenerate to various orders at the boundary, in directions given by the tower of fibrations. As well as Q-rank 1 locally symmetric spaces, examples include Ricci-flat metrics on the complement of a divisor in a smooth variety constructed by Tian and Yau. In this first part of the calculus construction, parametrices are found for "fully elliptic differential \bfa-operators", which are uniformly elliptic operators on these manifolds that satisfy an additional invertibility condition at infinity. In the second part we will consider operators that do not satisfy this condition.Comment: 44 pages, 2 figures -- Some explanations, references added; changed normalization of index sets in full calculus to make it more natural; made full calculus composition result more complet

    Harmonic forms on manifolds with edges

    Get PDF
    Let (X,g)(X,g) be a compact Riemannian stratified space with simple edge singularity. Thus a neighbourhood of the singular stratum is a bundle of truncated cones over a lower dimensional compact smooth manifold. We calculate the various polynomially weighted de Rham cohomology spaces of XX, as well as the associated spaces of harmonic forms. In the unweighted case, this is closely related to recent work of Cheeger and Dai \cite{CD}. Because the metric gg is incomplete, this requires a consideration of the various choices of ideal boundary conditions at the singular set. We also calculate the space of L2L^2 harmonic forms for any complete edge metric on the regular part of XX

    Hodge cohomology of gravitational instantons

    Get PDF
    We study the space of L^2 harmonic forms on complete manifolds with metrics of fibred boundary or fibred cusp type. These metrics generalize the geometric structures at infinity of several different well-known classes of metrics, including asymptotically locally Euclidean manifolds, the (known types of) gravitational instantons, and also Poincar\'e metrics on Q-rank 1 ends of locally symmetric spaces and on the complements of smooth divisors in K\"ahler manifolds. The answer in all cases is given in terms of intersection cohomology of a stratified compactification of the manifold. The L^2 signature formula implied by our result is closely related to the one proved by Dai [dai] and more generally by Vaillant [Va], and identifies Dai's tau invariant directly in terms of intersection cohomology of differing perversities. This work is also closely related to a recent paper of Carron [Car] and the forthcoming paper of Cheeger and Dai [CD]. We apply our results to a number of examples, gravitational instantons among them, arising in predictions about L^2 harmonic forms in duality theories in string theory.Comment: 45 pages; corrected final version. To appear in Duke Math. Journa

    Analysis of Schr\"odinger operators with inverse square potentials I: regularity results in 3D

    Get PDF
    Let VV be a potential on \RR^3 that is smooth everywhere except at a discrete set \maS of points, where it has singularities of the form Z/ρ2Z/\rho^2, with ρ(x)=xp\rho(x) = |x - p| for xx close to pp and ZZ continuous on \RR^3 with Z(p)>1/4Z(p) > -1/4 for p \in \maS. Also assume that ρ\rho and ZZ are smooth outside \maS and ZZ is smooth in polar coordinates around each singular point. We either assume that VV is periodic or that the set \maS is finite and VV extends to a smooth function on the radial compactification of \RR^3 that is bounded outside a compact set containing \maS. In the periodic case, we let Λ\Lambda be the periodicity lattice and define \TT := \RR^3/ \Lambda. We obtain regularity results in weighted Sobolev space for the eigenfunctions of the Schr\"odinger-type operator H=Δ+VH = -\Delta + V acting on L^2(\TT), as well as for the induced \vt k--Hamiltonians \Hk obtained by restricting the action of HH to Bloch waves. Under some additional assumptions, we extend these regularity and solvability results to the non-periodic case. We sketch some applications to approximation of eigenfunctions and eigenvalues that will be studied in more detail in a second paper.Comment: 15 pages, to appear in Bull. Math. Soc. Sci. Math. Roumanie, vol. 55 (103), no. 2/201

    Justice Is Not Just a Word

    Get PDF
    Every civilized society, from the earliest dawn of history, has had some men set apart from the other members of the clan, tribe, province, state or nation, to decide controversies and issues of fact according to the best wisdom they possessed. They were (and are) the wise men of their time and age. They were and are the law men
    corecore