633 research outputs found
Spektroskopija visokog razlučivanja hiperjezgre 12λb proizvedene reakcijom (e, e ′K+)
The first electroproduction experiment of a hypernucleus was undertaken at the Thomas Jefferson National Acceleration Facility. The (e, e ′K+) reaction was used on a natC target resulting in the observation of the 12ΛB hypernucleus. The excitation spectrum is presented and discussed.U Thomas Jefferson National Acceleration Facility načinili smo prvo mjerenje elektrotvorbe hiperjezgre. Primijenili smo reakciju (e, e ′K+) na meti prirodnog C i opažali hiperjezgre 12ΛB. Raspravljamo spektar uzbude
A proximal femoral implant preserves physiological bone deformation: a biomechanical investigation in cadaveric bones
The aim of this study was to compare the perturbances in bone deformation patterns of the proximal femur due to a conventional cemented femoral stem and a novel uncemented implant designed on the principles of osseointegration. Five matched pairs of fresh frozen human femora were mechanically tested. Bone deformation patterns, measured with a video digitizing system under 1.5 kN joint force, showed that the cemented Spectron femoral implant caused significant alterations to the proximal femoral deformation pattern, whereas the Gothenburg osseointegrated titanium femoral implant did not significantly alter the bone behaviour (p < 0.05). Vertical micromotions measured under 1 kN after 1000 cycles were within the threshold of movement tolerable for bone ingrowth (21 microm for the Gothenburg system and 26 microm for the cemented implant).Published versio
Solar neutrino detection in a large volume double-phase liquid argon experiment
Precision measurements of solar neutrinos emitted by specific nuclear
reaction chains in the Sun are of great interest for developing an improved
understanding of star formation and evolution. Given the expected neutrino
fluxes and known detection reactions, such measurements require detectors
capable of collecting neutrino-electron scattering data in exposures on the
order of 1 ktonne yr, with good energy resolution and extremely low background.
Two-phase liquid argon time projection chambers (LAr TPCs) are under
development for direct Dark Matter WIMP searches, which possess very large
sensitive mass, high scintillation light yield, good energy resolution, and
good spatial resolution in all three cartesian directions. While enabling Dark
Matter searches with sensitivity extending to the "neutrino floor" (given by
the rate of nuclear recoil events from solar neutrino coherent scattering),
such detectors could also enable precision measurements of solar neutrino
fluxes using the neutrino-electron elastic scattering events. Modeling results
are presented for the cosmogenic and radiogenic backgrounds affecting solar
neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at
LNGS depth (3,800 meters of water equivalent). The results show that such a
detector could measure the CNO neutrino rate with ~15% precision, and
significantly improve the precision of the 7Be and pep neutrino rates compared
to the currently available results from the Borexino organic liquid
scintillator detector.Comment: 21 pages, 7 figures, 6 table
Transverse momentum dependence of semi-inclusive pion production
Cross sections for semi-inclusive electroproduction of charged pions
() from both proton and deuteron targets were measured for
, GeV, , and GeV. For
GeV, we find the azimuthal dependence to be small, as expected
theoretically. For both and , the dependence from the
deuteron is found to be slightly weaker than from the proton. In the context of
a simple model, this implies that the initial transverse momenta width of
quarks is larger than for quarks and, contrary to expectations, the
transverse momentum width of the favored fragmentation function is larger than
the unfavored one.Comment: 15 pages, 4 figures. Fit form changed to include Cahn effect Minor
revisions. Added one new figur
The Onset of Quark-Hadron Duality in Pion Electroproduction
A large data set of charged-pion electroproduction from both hydrogen and
deuterium targets has been obtained spanning the low-energy residual-mass
region. These data conclusively show the onset of the quark-hadron duality
phenomenon, as predicted for high-energy hadron electroproduction. We construct
several ratios from these data to exhibit the relation of this phenomenon to
the high-energy factorization ansatz of electron-quark scattering and
subsequent quark-to- pion production mechanisms.Comment: 11 pages, 3 figures, accepted in Phys. Rev. Lett. Tables adde
Snowmass CF1 Summary: WIMP Dark Matter Direct Detection
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection
subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader
Particle Physics community to produce this document. The charge to CF1 was (a)
to summarize the current status and projected sensitivity of WIMP direct
detection experiments worldwide, (b) motivate WIMP dark matter searches over a
broad parameter space by examining a spectrum of WIMP models, (c) establish a
community consensus on the type of experimental program required to explore
that parameter space, and (d) identify the common infrastructure required to
practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5
page appendix on instrumentation R&
Applications of quark-hadron duality in F2 structure function
Inclusive electron-proton and electron-deuteron inelastic cross sections have
been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken
x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the
experiment E00-116. These measurements are used to extend to larger x and Q2
precision, quantitative, studies of the phenomenon of quark-hadron duality. Our
analysis confirms, both globally and locally, the apparent violation of
quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance
data are compared to structure function data created from CTEQ6M and MRST2004
parton distribution functions (PDFs). More importantly, our new data show that
this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This
suggests only small violations of Q2 evolution by contributions from the
higher-twist terms in the resonance region which is confirmed by our
comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength
of the CTEQ6M and MRST2004 PDFs at large x is the major source of the
disagreement between data and these parameterizations in the kinematic regime
we study and that, in view of quark-hadron duality, properly averaged resonance
region data could be used in global QCD fits to reduce PDF uncertainties at
large x.Comment: 35 page
- …