1,843 research outputs found
By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans.
Pigmentation evolved in ancestral humans to protect against toxic, ultraviolet B irradiation, but the question remains: "what is being protected?" Because humans with dark pigmentation display a suite of superior epidermal functions in comparison with their more lightly pigmented counterparts, we hypothesized and provided evidence that dark pigmentation evolved in Africa to support cutaneous function. Because our prior clinical studies also showed that a restoration of a competent barrier dampens cutaneous inflammation, we hypothesized that resistance to inflammation could have provided pigmented hominins with yet another, important evolutionary benefit. We addressed this issue here in two closely related strains of hairless mice, endowed with either moderate (Skh2/J) or absent (Skh1) pigmentation. In these models, we showed that (a) pigmented mice display a markedly reduced propensity to develop inflammation after challenges with either a topical irritant or allergen in comparison with their nonpigmented counterparts; (b) visible and histologic evidence of inflammation was paralleled by reduced levels of pro-inflammatory cytokines (i.e., IL-1α and INFα); (c) because depigmentation of Skh2/J mouse skin enhanced both visible inflammation and pro-inflammatory cytokine levels after comparable pro-inflammatory challenges, the reduced propensity to develop inflammation was directly linked to the presence of pigmentation; and (d) furthermore, in accordance with our prior work showing that pigment production endows benefits by reducing the surface pH of skin, acidification of albino (Skh1) mouse skin also protected against inflammation, and equalized cytokine levels to those found in pigmented skin. In summary, pigmentation yields a reduced propensity to develop inflammation, consistent with our hypothesis that dark pigmentation evolved in ancestral humans to provide a suite of barrier-linked benefits that now include resistance to inflammation
Antidepressant Effects on Insulin Sensitivity and Proinflammatory Cytokines in the Depressed Males
Growing evidence suggests that mood disorder is associated with insulin resistance and inflammation. Thus the effects of antidepressants on insulin sensitivity and proinflammatory responses will be a crucial issue for depression treatment. In this study, we enrolled 43 non-diabetic young depressed males and adapted standard testing procedures to assess glucose metabolism during 4-week hospitalization. Before and after the 4-week antidepressant treatment, participants underwent oral glucose tolerance test (OGTT) and frequently sampled intravenous glucose tolerance test (FSIGT). Insulin sensitivity (SI), glucose effectiveness (SG), acute insulin response, and disposition index (DI) were estimated using the minimal model method. The plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and adiponectin were measured. The Hamilton depression rating scale (HAM-D) total scores were reduced significantly during the course of treatment. There were no significant changes in the parameters of SI, SG, and DI. Compared to drug naïve status, the level of plasma IL-6 was significantly elevated (0.77 to 1.30 pg/ml; P = .001) after antidepressant therapy. However, the concentrations of CRP, TNF-α, and adiponectin showed no differences during the course of treatment. The results suggest that antidepressants may promote stimulatory effect on the IL-6 production in the early stage of antidepressant treatment
Clonal dissemination of invasive and colonizing clonal complex 1 of serotype VI group B Streptococcus in central Taiwan
Background/PurposeThe aim of this study was to investigate clinical presentation, serotype distribution and genetic correlation of group B streptococcus (GBS) diseases. Since serotype VI prevalence far exceeded that reported in prior studies, genetic relationship of isolates was further analyzed.MethodsGBS isolates obtaining from patients with invasive diseases and pregnant women with colonization between June 2007 and December 2010 were analyzed. All isolates were tested for serotypes by multiplex PCR assay and pulsed-field gel electrophoresis (PFGE). Serotype VI isolates were further analyzed by multilocus sequence typing (MLST).ResultsA total of 134 GBS isolates were recovered from blood of 126 patients with invasive disease (94.0%) and anogenital swabs of 8 pregnant women (6.0%). Most common serotype was Ib (21.6%), followed by V (20.1%), VI (18.7%), III (15.7%), II (11.9 %), Ia (11.2%), and IX (0.7%). Serotype VI was also the leading type in infants with early onset disease (EOD; 3/8, 37.5%) and colonizing pregnant women (3/8, 37.5%). PFGE distinguished 33 pulsotypes, reflecting genetic diversity among GBS isolates. Among 25 serotype VI isolates tested, 14 were ST-1, seven were ST-679, three were ST-678, one was ST-681, and distributed into four PFGE pulsotypes. ST-678, ST-679, and ST-681 were novel sequence types; ST-678 and ST-679 are single-locus variants of ST-1 that belongs to clonal complex (CC) 1.ConclusionCC1 dissemination of serotype VI GBS thus emerges as an important invasive pathogen in infants and nonpregnant adults in central Taiwan. Serotype prevalence of GBS must be continuously monitored geographically to guide prevention strategy of GBS vaccines
Structural Characterization and Antioxidative Activity of Low-Molecular-Weights Beta-1,3-Glucan from the Residue of Extracted Ganoderma lucidum Fruiting Bodies
The major cell wall constituent of Ganoderma lucidum (G. lucidum) is β-1,3-glucan. This study examined the polysaccharide from the residues of alkaline-extracted fruiting bodies using high-performance anion-exchange chromatography (HPAEC), and it employed nuclear magnetic resonance (NMR) and mass spectrometry (MS) to confirm the structures. We have successfully isolated low-molecular-weight β-1,3-glucan (LMG), in high yields, from the waste residue of extracted fruiting bodies of G. lucidum. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay evaluated the capability of LMG to suppress H2O2-induced cell death in RAW264.7 cells, identifying that LMG protected cells from H2O2-induced damage. LMG treatment decreased H2O2-induced intracellular reactive oxygen species (ROS) production. LMG also influenced sphingomyelinase (SMase) activity, stimulated by cell death to induce ceramide formation, and then increase cell ROS production. Estimation of the activities of neutral and acid SMases in vitro showed that LMG suppressed the activities of both neutral and acid SMases in a concentration-dependent manner. These results suggest that LMG, a water-soluble β-1,3-glucan recycled from extracted residue of G. lucidum, possesses antioxidant capability against H2O2-induced cell death by attenuating intracellular ROS and inhibiting SMase activity
Heart Rate and Motion Monitoring System
Modern day technology for medical and health monitoring devices are nowhere near the state of technology in consumer products. Due to an increasing number of retirees (Baby boomers) and the high cost of medical related products and services, a huge market demand for low‐cost medical/health monitoring devices exists in today’s society. Heart related disease; the number one killer in developed nations possesses a great threat to the health of our society both directly and indirectly from economical, environmental, political, and other aspects. Our proposed Heart Rate and Motion Monitoring System (HRMMS) can help the general public with the awareness and prevention of heart related diseases in its early phase by analyzing heart rate with respect to the physical activity of users. Irregular heart conditions can be sent to medical practitioners remotely through a custom application on the user’s cell phone
- …