2,655 research outputs found
Enhanced thermoelectric figure of merit in vertical graphene junctions
In this work, we investigate thermoelectric properties of junctions
consisting of two partially overlapped graphene sheets coupled to each other in
the cross-plane direction. It is shown that because of the weak van-der Waals
interactions between graphene layers, the phonon conductance in these junctions
is strongly reduced, compared to that of single graphene layer structures,
while their electrical performance is weakly affected. By exploiting this
effect, we demonstrate that the thermoelectric figure of merit can reach values
higher than 1 at room temperature in junctions made of gapped graphene
materials, for instance, graphene nanoribbons and graphene nanomeshes. The
dependence of thermoelectric properties on the junction length is also
discussed. This theoretical study hence suggests an efficient way to enhance
thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte
Mechanisms and modeling of the effects of additives on the nitrogen oxides emission
A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system
Application of Random Walk Model for Timing Recovery in Modern Mobile SATCOM Systems
In a modern mobile satellite communication (SATCOM) system, a ground terminal receiver receives a radio frequency signal that is demodulated to generate a baseband digital signal waveform containing a self-clocking bit stream of digital data. The received baseband digital signal waveform is recovered and tracked using a timing recovery loop (TRL). The traditional TRLs use early-and-late gates, digital transition tracking, filter-and-square, and delay-and-multiply functions. In bit timing detection, the bit stream is self-clocking and the timing differential dithers about correct bit timing in the TRLs. For mobile satellite communication environments, the traditional TRLs drop lock when the loop signal-to-noise ratio (SNR) is smaller than a threshold value or the residual Doppler frequency is larger than the operating loop bandwidth. After dropping lock, the traditional TRLs experience long hang up time due to the need to reacquire the timing pulses. Recently, random walk filters (RWF) have been adapted to improve the bit clock locking stability and are applied to recover bit timing information of a digital data stream. This chapter describes random walk model for timing jitter and discusses how RWF solution can address the timing recovery challenges in mobile satellite communication environments
Variational Analysis of Marginal Functions with Applications to Bilevel Programming
This paper pursues a twofold goal. First to derive new results on generalized differentiation in variational analysis focusing mainly on a broad class of intrinsically nondifferentiable marginal/value functions. Then the results established in this direction apply to deriving necessary optimality conditions for the optimistic version of bilevel programs that occupy a remarkable place in optimization theory and its various applications. We obtain new sets of optimality conditions in both smooth and smooth settings of finite-dimensional and infinite-dimensional spaces
- …