12,125 research outputs found

    Magnifying superlens in the visible frequency range

    Get PDF
    In this communication we introduce a new design of the magnifying superlens and demonstrate it in the experiment.Comment: 3pages, 1 figur

    Hybrid fuzzy and sliding-mode control for motorised tether spin-up when coupled with axial vibration

    Get PDF
    A hybrid fuzzy sliding mode controller is applied to the control of motorised tether spin-up coupled with an axial oscillation phenomenon. A six degree of freedom dynamic model of a motorised momentum exchange tether is used as a basis for interplanetary payload exchange. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A special simulation program has been devised in MATLAB and MATHEMATICA for a given initial condition data case

    Sloshing of Cryogenic Helium Driven by Lateral Impulse/Gravity Gradient-Dominated/or g-Jitter-Dominated Accelerations and Orbital Dynamics

    Get PDF
    The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques

    Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    Get PDF
    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques

    Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    Get PDF
    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated

    Disruption of nNOS-NOS1AP protein-protein interactions suppresses neuropathic pain in mice

    Get PDF
    Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS-NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESVΔ1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS-NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS-NOS1AP protein-protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists

    Rare K decays in a model of quark and lepton masses

    Get PDF
    An extension of a model of neutrino masses to the quark sector provides an interesting link between these two sectors. A parameter which is important to describe neutrino oscillations and masses is found to be a crucial one appearing in various ``penguin'' operators, in particular the so-called Z penguin. This parameter is severely constrained by the rare decay process KLμ+μK_{L} \to \mu^{+} \mu^{-}. This in turn has interesting implications on the decay rates of other rare processes such as KLμeK_{L} \to \mu e, etc..., as well as on the masses of the neutrinos and the masses of the vector-like quarks and leptons which appear in our model.Comment: 34 pages, 10 figures, corrected some typos in the introductio
    corecore