38 research outputs found

    Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi

    Get PDF
    Acknowledgments: Funding was provided by the Netherlands Organisation for Scientific Research (NWO) in the form of a personal Veni grant to A.v.d.W. This is publication number 5923 of the NIOO-KNAW Netherlands Institute of Ecology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance

    Get PDF
    The FMR1 gene partially appears to control ovarian reserve, with a specific ovarian sub-genotype statistically associated with a polycystic ovary (PCO)- like phenotype. Some forms of PCO have been associated with autoimmunity. We, therefore, investigated in multiple regression analyses associations of ovary-specific FMR1 genotypes with autoimmunity and pregnancy chances (with in vitro fertilization, IVF) in 339 consecutive infertile women (455 IVF cycles), 75 with PCO-like phenotype, adjusted for age, race/ethnicity, medication dosage and number of oocytes retrieved. Patients included 183 (54.0%) with normal (norm) and 156 (46%) with heterozygous (het) FMR1 genotypes; 133 (39.2%) demonstrated laboratory evidence of autoimmunity: 51.1% of het-norm/low, 38.3% of norm and 24.2% het-norm/high genotype and sub-genotypes demonstrated autoimmunity (p = 0.003). Prevalence of autoimmunity increased further in PCO-like phenotype patients with het-norm/low genotype (83.3%), remained unchanged with norm (34.0%) and decreased in het-norm/high women (10.0%; P<0.0001). Pregnancy rates were significantly higher with norm (38.6%) than het-norm/low (22.2%, p = 0.001). FMR1 sub-genotype het-norm/low is strongly associated with autoimmunity and decreased pregnancy chances in IVF, reaffirming the importance of the distal long arm of the X chromosome (FMR1 maps at Xq27.3) for autoimmunity, ovarian function and, likely, pregnancy chance with IVF

    PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability

    Get PDF
    The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T&gt;G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C&gt;A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.</p

    Associated features in females with an FMR1 premutation

    Get PDF
    Abstract Changes in the fragile X mental retardation 1 gene (FMR1) have been associated with specific phenotypes, most specifically those of fragile X syndrome (FXS), fragile X tremor/ataxia syndrome (FXTAS), and fragile X primary ovarian insufficiency (FXPOI). Evidence of increased risk for additional medical, psychiatric, and cognitive features and conditions is now known to exist for individuals with a premutation, although some features have been more thoroughly studied than others. This review highlights the literature on medical, reproductive, cognitive, and psychiatric features, primarily in females, that have been suggested to be associated with changes in the FMR1 gene. Based on this review, each feature is evaluated with regard to the strength of evidence of association with the premutation. Areas of need for additional focused research and possible intervention strategies are suggested

    Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI)

    Get PDF
    Fragile X-associated primary ovarian insufficiency (FXPOI) is among the family of disorders caused by the expansion of a CGG repeat sequence in the 5' untranslated region of the X-linked gene FMR1. About 20% of women who carry the premutation allele (55 to 200 unmethylated CGG repeats) develop hypergonadotropic hypogonadism and cease menstruating before age 40. Some proportion of those who are still cycling show hormonal profiles indicative of ovarian dysfunction. FXPOI leads to subfertility and an increased risk of medical conditions associated with early estrogen deficiency. Little progress has been made in understanding the etiology of this clinically significant disorder. Understanding the molecular mechanisms of FXPOI requires a detailed knowledge of ovarian FMR1 mRNA and FMRP’s function. In humans, non-invasive methods to discriminate the mechanisms of the premutation on ovarian function are not available, thus necessitating the development of model systems. Vertebrate (mouse and rat) and invertebrate (Drosophila melanogaster) animal studies for the FMR1 premutation and ovarian function exist and have been instrumental in advancing our understanding of the disease phenotype. For example, rodent models have shown that FMRP is highly expressed in oocytes where it is important for folliculogenesis. The two premutation mouse models studied to date show evidence of ovarian dysfunction and, together, suggest that the long repeat in the transcript itself may have some pathological effect quite apart from any effect of the toxic protein. Further, ovarian morphology in young animals appears normal and the primordial follicle pool size does not differ from that of wild-type animals. However, there is a progressive premature decline in the levels of most follicle classes. Observations also include granulosa cell abnormalities and altered gene expression patterns. Further comparisons of these models are now needed to gain insight into the etiology of the ovarian dysfunction. Premutation model systems in non-human primates and those based on induced pluripotent stem cells show particular promise and will complement current models. Here, we review the characterization of the current models and describe the development and potential of the new models. Finally, we will discuss some of the molecular mechanisms that might be responsible for FXPOI

    Human small intestine is capable of restoring barrier function after short ischemic periods

    No full text
    AIM: To assess intestinal barrier function during human intestinal ischemia and reperfusion (IR). METHODS: In a human experimental model, 6 cm of jejunum was selectively exposed to 30 min of ischemia (I) followed by 30 and 120 min of reperfusion (R). A sham procedure was also performed. Blood and tissue was sampled at all-time points. Functional barrier function was assessed using dual-sugar absorption tests with lactulose (L) and rhamnose (R). Plasma concentrations of citrulline, an amino acid described as marker for enterocyte function were measured as marker of metabolic enterocytes restoration. Damage to the epithelial lining was assessed by immunohistochemistry for tight junctions (TJs), by plasma marker for enterocytes damage (I-FABP) and analyzed by electron microscopy (EM) using lanthanum nitrate as an electrondense marker. RESULTS: Plasma L/R ratio's were significantly increased after 30 min of ischemia (30I) followed by 30 min of reperfusion (30R) compared to control (0.75 ± 0.10vs0.20 ± 0.09,P< 0.05). At 120 min of reperfusion (120R), ratio's normalized (0.17 ± 0.06) and were not significantly different from control. Plasma levels of I-FABP correlated with plasma L/R ratios measured at the same time points (correlation: 0.467,P< 0.01). TJs staining shows distortion of staining at 30I. An intact lining of TJs was again observed at 30I120R. Electron microscopy analysis revealed disrupted TJs after 30I with paracellular leakage of lanthanum nitrate, which restored after 30I120R. Furthermore, citrulline concentrations closely paralleled the histological perturbations during intestinal IR. CONCLUSION: This study directly correlates histological data with intestinal permeability tests, revealing that the human gut has the ability of to withstand short episodes of ischemia, with morphological and functional recovery of the intestinal barrier within 120 min of reperfusion

    Bacterial numbers and fungal biomass (ergosterol) after 6 weeks of growth of <i>Carex arenaria</i> seedlings in quartz sand microcosms.

    No full text
    <p>1A: Number of bacterial colony forming units in the <i>Carex</i> rhizosphere (root-adhering sand); * indicates significant difference (p < 0.05) between microcosms with and without (control) the presence of inoculated fungi, # indicates p = 0.052 for Log-transformed data. 1B: Ergosterol concentrations. r indicates rhizophere sand (sand adhering to <i>Carex</i> roots), nr indicates sand remaining after removal of <i>Carex</i> roots. * indicates significant difference (p < 0.05) within fungal treatments between root-adhering and non-root-adhering sand. Data for both figures are the averages of 5 or 6 sand microcosms. Error bars represent standard deviation.</p

    Percentage of rhizosphere bacterial isolates positive for different enzyme activities.

    No full text
    <p>Bacterial isolates were obtained from root-adhering soil after 6 weeks of growth of <i>Carex arenaria</i> seedlings in quartz sand microcosms. * indicates significant difference (p < 0.05) between microcosms with and without pre-inoculation of fungi. Note that experiment 1 and 2 started with different bacterial inoculums as indicated in Material & Methods. Data are the averages of three randomly selected sand microcosms. Error bars represent standard deviation. For each microcosm 40 bacterial isolates were individually screened for the different enzyme activities.</p

    Schematic illustration of possible stimulation of biocontrol of soil-borne pathogenic fungi by increase of saprotrophic fungi.

    No full text
    <p>Organic amendments and/or other measures that stimulate growth of saprotrophic fungi can result in an increase of uptake of rhizodeposits by these fungi and, consequently, in an increase of competitive fungal pressure towards rhizosphere bacteria. As a result bacteria that are antagonistic against fungi will increase and several of these bacteria may also be antagonistic against soil-borne pathogenic fungi and form a natural barrier against fungal diseases. An advantage over introduction of antifungal biocontrol strains is that the fungus-induced stimulation occurs <i>in situ</i> with indigenous soil bacteria that are adapted to the local environmental conditions.</p
    corecore