324 research outputs found

    The quasi-free-standing nature of graphene on H-saturated SiC(0001)

    Full text link
    We report on an investigation of quasi-free-standing graphene on 6H-SiC(0001) which was prepared by intercalation of hydrogen under the buffer layer. Using infrared absorption spectroscopy we prove that the SiC(0001) surface is saturated with hydrogen. Raman spectra demonstrate the conversion of the buffer layer into graphene which exhibits a slight tensile strain and short range defects. The layers are hole doped (p = 5.0-6.5 x 10^12 cm^(-2)) with a carrier mobility of 3,100 cm^2/Vs at room temperature. Compared to graphene on the buffer layer a strongly reduced temperature dependence of the mobility is observed for graphene on H-terminated SiC(0001)which justifies the term "quasi-free-standing".Comment: 3 pages, 3 figures, accepted for publication in Applied Physics Letter

    An empirical study of the “prototype walkthrough”: a studio-based activity for HCI education

    Get PDF
    For over a century, studio-based instruction has served as an effective pedagogical model in architecture and fine arts education. Because of its design orientation, human-computer interaction (HCI) education is an excellent venue for studio-based instruction. In an HCI course, we have been exploring a studio-based learning activity called the prototype walkthrough, in which a student project team simulates its evolving user interface prototype while a student audience member acts as a test user. The audience is encouraged to ask questions and provide feedback. We have observed that prototype walkthroughs create excellent conditions for learning about user interface design. In order to better understand the educational value of the activity, we performed a content analysis of a video corpus of 16 prototype walkthroughs held in two HCI courses. We found that the prototype walkthrough discussions were dominated by relevant design issues. Moreover, mirroring the justification behavior of the expert instructor, students justified over 80 percent of their design statements and critiques, with nearly one-quarter of those justifications having a theoretical or empirical basis. Our findings suggest that PWs provide valuable opportunities for students to actively learn HCI design by participating in authentic practice, and provide insight into how such opportunities can be best promoted

    A statistical study of the post-impulsive-phase acceleration of flare-associated coronal mass ejections

    Full text link
    It is now generally accepted that the impulsive acceleration of a coronal mass ejection (CME) in the inner corona is closely correlated in time with the main energy release of the associated solar flare. In this paper, we examine in detail the post-impulsive-phase acceleration of a CME in the outer corona, which is the phase of evolution immediately following the main impulsive acceleration of the CME; this phase is believed to correspond to the decay phase of the associated flare. This observational study is based on a statistical sample of 247 CMEs that are associated with M- and X-class GOES soft X-ray flares from 1996 to 2006. We find that, from many examples of events, the CMEs associated with flares with long-decay time (or so-called long-duration flares) tend to have positive post-impulsive-phase acceleration, even though some of them have already obtained a high speed at the end of the impulsive acceleration but do not show a deceleration expected from the aerodynamic dragging of the background solar wind. On the other hand, the CMEs associated with flares of short-decay time tend to have significant deceleration. In the scattering plot of all events, there is a weak correlation between CME post-impulsive-phase acceleration and flare decay time. The CMEs deviated from the general trend are mostly slow or weak ones associated with flares of short-decay time; the deviation is caused by the relatively stronger solar wind dragging force for these events. The implications of our results on CME dynamics and CME-flare relations are discussed.Comment: 32 pages, 9 figures, accepted for publication in Ap

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    Structure and Dynamics of the Sun's Open Magnetic Field

    Full text link
    The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.Comment: 26 pages, 6 figure

    Calomplification — the power of generative calorimeter models

    Get PDF
    Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter

    Study the build-up, initiation and acceleration of 2008 April 26 coronal mass ejection observed by STEREO

    Full text link
    In this paper, we analyze the full evolution, from a few days prior to the eruption to the initiation, and the final acceleration and propagation, of the CME that occurred on 2008 April 26 using the unprecedented high cadence and multi-wavelength observations by STEREO. There existed frequent filament activities and EUV jets prior to the CME eruption for a few days. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in the sequence of magnetogram images from MDI (Michelson Doppler Imager) onboard SOHO. The slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of the flux rope implies that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. During the period of impulsive acceleration, the time profile of the CME acceleration in the inner corona is found to be consistent with the time profile of the reconnection electric field inferred from the footpoint separation and the RHESSI 15-25 keV HXR flux curve of the associated flare. The full evolution of this CME can be described in four distinct phases: the build-up phase, initiation phase, main acceleration phase, and propagation phase. The physical properties and the transition between these phases are discussed, in an attempt to provide a global picture of CME dynamic evolution.Comment: 28 pages, 8 figures, accepted for publication in Ap

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R_\odot where the flow speed, which equals the Alfv\'en speed, is \sim 200 km s1^{-1}

    Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    Full text link
    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analyses techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (1999) can result in significant errors in the determination of the CME direction when the CME propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had an heliospheric deflection of less than 20deg as they propagated in the HI fields-of-view, which, we believe, validates this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic
    corecore