22 research outputs found

    Species composition, Plant Community structure and Natural regeneration status of Belete Moist Evergreen Montane Forest, Oromia Regional state, Southwestern Ethiopia

    Get PDF
    Belete forest is one of the very few remnant moist evergreen montane forests in Ethiopia. The objective of this work was to study the vegetation structure, composition and Natural regeneration status of Belete moist evergreen montane forest. To investigate the plant community structure, composition and regeneration status of Belete forest, line transects were laid down on the longest transect starting from the bottom valley to the top ridge. Sample quadrats 20m x20 m, 5m x 5m, 1m x 1m were laid for trees, shrubs, sapling and seedling, and herbaceous layer respectively in a nested form. The sample quadrats were laid down along transects at a distance of 50m from each other. A total of 69 quadrats were sampled. Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant species representing 69 families and 135 genera were recorded. These were composed of 31.2% Herbs, 28.7% Trees, 26.1% Shrubs, 5.7% Climbers, 5.1% Liana, 1.9% Epiphytic herbs, and 1.3% herbaceous Ferns. The major families were Fabaceae and Asteraceae each represented by 10 species (6.4%), followed by Lamiaceae 9 (5.7%) and Rubiaceae 6 (3.8%). Other thirty three families consisting 19.8% were represented by one species only. Regeneration status of the forest was analyzed by comparing saplings and seedlings with the matured trees. Results revealed that Belete moist evergreen montane forest is at good regeneration status. Planning and management of the forest should be assisted by research findings, such as detailed ecological studies in relation to various environmental factors.Keywords: Belete forest, Community structure, Moist Evergreen Montane Forest, Regeneration

    Technology generation to dissemination:lessons learned from the tef improvement project

    Get PDF
    Indigenous crops also known as orphan crops are key contributors to food security, which is becoming increasingly vulnerable with the current trend of population growth and climate change. They have the major advantage that they fit well into the general socio-economic and ecological context of developing world agriculture. However, most indigenous crops did not benefit from the Green Revolution, which dramatically increased the yield of major crops such as wheat and rice. Here, we describe the Tef Improvement Project, which employs both conventional- and molecular-breeding techniques to improve tef\u2014an orphan crop important to the food security in the Horn of Africa, a region of the world with recurring devastating famines. We have established an efficient pipeline to bring improved tef lines from the laboratory to the farmers of Ethiopia. Of critical importance to the long-term success of this project is the cooperation among participants in Ethiopia and Switzerland, including donors, policy makers, research institutions, and farmers. Together, European and African scientists have developed a pipeline using breeding and genomic tools to improve the orphan crop tef and bring new cultivars to the farmers in Ethiopia. We highlight a new variety, Tesfa, developed in this pipeline and possessing a novel and desirable combination of traits. Tesfa\u2019s recent approval for release illustrates the success of the project and marks a milestone as it is the first variety (of many in the pipeline) to be released

    The potential of small exclosures in assisting regeneration of coffee shade trees in South-Western Ethiopian coffee forests

    No full text
    © 2015 John Wiley & Sons Ltd. Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late-successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.status: publishe

    Conserving wild Arabica coffee: emerging threats and opportunities

    No full text
    Climate change and emerging pests and diseases are posing important challenges to global crop productivity, including that of Arabica coffee. The genetic basis of commercially used Arabica coffee cultivars is extremely narrow, and it is uncertain how much genetic diversity is present in ex situ collections. Conserving the wild Arabica coffee gene pool and its evolutionary potential present in the montane forests of SW Ethiopia is thus critically important for maintaining coffee yield and yield stability worldwide. Globally, coffee agroforestry helps to conserve forest cover and forest biodiversity that cannot persist in open agricultural landscapes, but the conservation of the wild Arabica coffee gene pool requires other priorities than those that are usually set for conserving forest biodiversity in mixed tropical landscapes. We show how forest loss and degradation, coffee management, in particular production intensification, and the introduction of cultivars, are threatening the genetic integrity of these wild populations. We propose an active land sparing approach based on strict land use zoning to conserve the genetic resources and the in situ evolutionary potential of Arabica coffee and discuss the major challenges including the development of access and benefit sharing mechanisms for ensuring long-term support to conservation.Highlights • Climate change and emerging diseases challenge global Arabica coffee production. • The wild Arabica genepool from SW Ethiopia is needed to harness coffee production. • Only in situ conservation can secure the evolutionary potential of Arabica coffee. • In situ coffee conservation can only be accomplished in strict forest reserves. • Extensive coffee production systems may secure other components of biodiversity.status: publishe

    Semi-forest coffee cultivation and the conservation of Ethiopian Afromontane rainforest fragments

    No full text
    Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation. Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analysis were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield. Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1 %). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests. Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.status: publishe

    Tef [Eragrostis tef (Zucc.) Trotter] Breeding

    No full text
    Tef or teff Eragrostis tef (Zucc.) Trotter, a cereal crop which adapts to extreme climatic and soil conditions, is extensively cultivated in the Horn of Africa. It is also considered as nutritious and a life-style crop due to its richness in essential nutrients and health-related benefits. However, the productivity of the crop is extremely low due to little scientific improvement made globally. It is, therefore, in the category of orphan crops. Together with all cereal crops, tef belongs to the Grass or Poaceae family. The improvement of tef focuses on selection and hybridization techniques. However, recently, molecular and high-throughput techniques have also been implemented to a limited scale. Forty-two tef varieties were approved for release by the Ethiopian National Variety Release Committee in the past four decades. Due to the adoption of improved varieties and technologies, the national average yield of tef has more than doubled over the last 20Â years. This review describes the progress in tef breeding and variety development as well as dissemination of the improved varieties to the farming community
    corecore