4 research outputs found
Recommended from our members
Genetically Modifying Mosquitoes Without Compromising Fitness: Can It Be Done?
Malaria is a mosquito-borne disease caused by parasites belonging to the genus Plasmodium. Malaria remains one of the most devastating infectious diseases, killing nearly half a million people each year (WHO 2015). 1,2 With the current increase in drug and insecticide resistance, there is an urgent need to develop novel strategies for malaria control. One such strategy to genetically engineer mosquito vectors to make them resistant to infection by malaria parasites in order to replace the wild population with malaria refractory mosquitoes. The insulin/IGF-like signaling (IIS) pathway is one potential target for a population replacement strategy since it regulates metabolism, immunity, lifespan and reproduction in mosquitoes. We previously generated a transgenic Anopheles stephensi line with increased insulin signaling in the fat body. Surprisingly, these transgenic mosquitoes survived significantly longer than their non-transgenic siblings, while in nearly every other organism increased IIS resulted in a decrease in lifespan. In this work, we sought to define how the fat body IIS controls lifespan, and also to determine the impact of the fat body IIS on reproduction, metabolism, and Plasmodium resistance. We found that overexpression of the molecule Akt, a key IIS nexus molecule, resulted in an increased overall fitness and enhanced Plasmodium falciparum parasite resistance in transgenic Anopheles stephensi, as compared to their non-transgenic siblings. Overall results from these studies highlight the important role of IIS in the mosquito fat body in controlling lifespan, reproduction, metabolism and immunity
Recommended from our members
Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection.
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development
Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection.
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development