5,357 research outputs found
Identifying the causal mechanisms of the quiet eye
Scientists who have examined the gaze strategies employed by athletes have determined that longer quiet eye (QE) durations (QED) are characteristic of skilled compared to less-skilled performers. However, the cognitive mechanisms of the QE and, specifically, how the QED affects performance are not yet fully understood. We review research that has examined the functional mechanism underlying QE and discuss the neural networks that may be involved. We also highlight the limitations surrounding QE measurement and its definition and propose future research directions to address these shortcomings. Investigations into the behavioural and neural mechanisms of QE will aid the understanding of the perceptual and cognitive processes underlying expert performance and the factors that change as expertise develops
The Asymmetric Thick Disk: A Star Count and Kinematic Analysis. II The Kinematics
We report a kinematic signature associated with the observed asymmetry in the
distribution of thick disk/inner halo stars interior to the Solar circle
described in Paper I. In that paper we found a statistically significant excess
(20% to 25 %) of stars in quadrant I (l ~ 20 deg to 55 deg) both above and
below the plane (b ~ +/- 25 deg to +/- 45 deg) compared to the complementary
region in quadrant IV. We have measured Doppler velocities for 741 stars,
selected according to the same magnitude and color criteria, in the direction
of the asymmetry and in the corresponding fields in quadrant IV. We have also
determined spectral types and metallicities measured from the same spectra. We
not only find an asymmetric distribution in the V_LSR velocities for the stars
in the two regions, but the angular rate of rotation, w, for the stars in
quadrant I reveals a slower effective rotation rate compared to the
corresponding quadrant IV stars. We use our [Fe/H] measurements to separate the
stars into the three primary population groups, halo, thick disk, and disk, and
conclude that it is primarily the thick disk stars that show the slower
rotation in quadrant I. A solution for the radial, tangential and vertical
components of the V_LSR velocities, reveals a significant lag of ~ 80 to 90
km/s in the direction of Galactic rotation for the thick disk stars in quadrant
I, while in quadrant IV, the same population has only a ~ 20 km/s lag. The
results reported here support a rotational lag among the thick disk stars due
to a gravitational interaction with the bar as the most likely explanation for
the asymmetry in both the star counts and the kinematics. The affected thick
disk stars, however, may be associated with the recently discovered Canis Major
debris stream or a similar merger event (abridged).Comment: Accepted for publication in the Astronomical Journa
Contributions from cognitive neuroscience to understanding functional mechanisms of visual search.
We argue that cognitive neuroscience can contribute not only information about the neural localization of processes underlying visual search, but also information about the functional nature of these processes. First we present an overview of recent work on whether search for form - colour conjunctions is constrained by processes involved in binding across the two dimensions. Patients with parietal lesions show a selective problem with form - colour conjunctive search relative to a more difficult search task not requiring cross-dimensional binding. This is consistent with an additional process - cross-dimensional binding - being involved in the conjunctive search task. We then review evidence from preview search using electrophysiological, brain imaging, and neuropsychological techniques suggesting preview benefits in search are not simply due to onset capture. Taken together the results highlight the value of using converging evidence from behavioural studies of normal observers and studies using neuroscientific methods. © 2006 Psychology Press Ltd
- …