7,185 research outputs found

    Foreign Direct Investments in Business Services: Transforming the Visegrád Four Region into a Knowledge-based Economy?

    Get PDF
    Foreign direct investments (FDIs) in the service sector are widely attributed an important role in bringing more skill-intensive activities into the Visegrad Four (V4). This region—comprising Poland, the Czech Republic, Hungary and Slovakia—relied heavily on FDIs in manufacturing, which was often found to generate activities with limited skill content. This contribution deconstructs the chaotic concept of “business services” by analysing the actual nature of service sector activities outsourced and offshored to the V4. Using the knowledge-based economy (KBE) as a benchmark, the paper assesses the potential of service sector outsourcing in contributing to regional competitiveness by increasing the innovative capacity. It also discusses the role of state policies towards service sector FDI (SFDI). The analysis combines data obtained from case studies undertaken in service sector outsourcing projects in V4 countries. Moreover, it draws on interviews with senior employees of investment promotion agencies and publicly available data and statistics on activities within the service sector in the region. It argues that the recent inward investments in business services in the V4 mainly utilize existing local human capital resources, and their contribution to the development of the KBE is limited to employment creation and demand for skilled labour

    Serendipitous XMM-Newton discovery of a cluster of galaxies at z=0.28

    Get PDF
    We report the discovery of a galaxy cluster serendipitously detected as an extended X-ray source in an offset observation of the group NGC 5044. The cluster redshift, z=0.281, determined from the optical spectrum of the brightest cluster galaxy, agrees with that inferred from the X-ray spectrum using the Fe K alpha complex of the hot ICM (z=0.27 +/- 0.01). Based on the 50 ks XMM observation, we find that within a radius of 383 kpc the cluster has an unabsorbed X-ray flux, f_X (0.5-2 keV) = 3.34 (+0.08, -0.13) x 10^{-13} erg/cm^2/s, a bolometric X-ray luminosity, L_X = 2.21 (+0.34, -0.19) x 10^{44} erg/s, kT = 3.57 +/- 0.12 keV, and metallicity, 0.60 +/- 0.09 solar. The cluster obeys the scaling relations for L_X and T observed at intermediate redshift. The mass derived from an isothermal NFW model fit is, M_vir = 3.89 +/- 0.35 x 10^{14} solar masses, with a concentration parameter, c = 6.7 +/- 0.4, consistent with the range of values expected in the concordance cosmological model for relaxed clusters. The optical properties suggest this could be a ``fossil cluster''.Comment: 5 pages, 4 colour figures, accepted for publication in Ap

    Structural motifs of biomolecules

    Full text link
    Biomolecular structures are assemblies of emergent anisotropic building modules such as uniaxial helices or biaxial strands. We provide an approach to understanding a marginally compact phase of matter that is occupied by proteins and DNA. This phase, which is in some respects analogous to the liquid crystal phase for chain molecules, stabilizes a range of shapes that can be obtained by sequence-independent interactions occurring intra- and intermolecularly between polymeric molecules. We present a singularityfree self-interaction for a tube in the continuum limit and show that this results in the tube being positioned in the marginally compact phase. Our work provides a unified framework for understanding the building blocks of biomolecules.Comment: 13 pages, 5 figure

    Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

    Full text link
    State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting, close form expressions, are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method these predictions are compared with corresponding 3-D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations

    Albumin-based hydrogels for regenerative engineering and cell transplantation.

    Get PDF
    Albumin, the most abundant plasma protein in mammals, is a versatile and easily obtainable biomaterial. It is pH and temperature responsive, dissolvable in high concentrations and gels readily in defined conditions. This versatility, together with its inexpensiveness and biocompatibility, makes albumin an attractive biomaterial for biomedical research and therapeutics. So far, clinical research in albumin has centered mainly on its use as a carrier molecule or nanoparticle to improve drug pharmacokinetics and delivery to target sites. In contrast, research in albumin-based hydrogels is less established albeit growing in interest over recent years. In this minireview, we report current literature and critically discuss the synthesis, mechanical properties, biological effects and uses, biodegradability and cost of albumin hydrogels as a xeno-free, customizable, and transplantable construct for tissue engineering and regenerative medicine.EPSRC Isaac Newton Trust Rosetrees Trus

    Vibrational energy relaxation in proteins

    Full text link
    An overview of theories related to vibrational energy relaxation (VER) in proteins is presented. VER of a selected mode in cytochrome c is studied using two theoretical approaches. One is the equilibrium simulation approach with quantum correction factors, and the other is the reduced model approach which describes the protein as an ensemble of normal modes interacting through nonlinear coupling elements. Both methods result in estimates of the VER time (sub ps) for a CD stretching mode in the protein at room temperature. The theoretical predictions are in accord with the experimental data of Romesberg's group. A perspective on future directions for the detailed study of time scales and mechanisms for VER in proteins is presented.Comment: 12 pages, 4 figures, accepted for publication in PNA
    corecore