231 research outputs found

    Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products

    Get PDF
    We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of reads al- lowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-organism derived species variants, an ob- servation that has significant implications for sequence clustering of similar high-throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is taxonomically informative; these include the V3, V5 regions of the bac- terial 16S rRNA genes and the eukaryotic V9 region that is gaining popularity for sampling protist diversity.Comment: 28 pages, 13 figure

    Reaching a Double-Digit Dielectric Constant with Fullerene Derivatives

    Get PDF
    The dielectric constant (ϵr) of organic semiconductors is a key material parameter for improving device performance in the field of organic electronics. However, the effect of the dielectric constant on the electronic and optoelectronic properties of materials remains unclear due to the scarcity of known organic semiconductors with an ϵr value higher than 6. Herein, the optical and electronic properties of a homologous series of fullerene derivatives with high ϵr are studied. The low frequency (<106 Hz) ϵr is extracted from the capacitance measured using impedance spectroscopy, and the effect of length (n) and geometrical arrangement of the polar ethylene glycol (EG) side chains is investigated. The ϵr is found to correlate with length for the symmetrical Bingel adducts, whereas for the unsymmetrical branched-EG chain adducts there is no significant difference between the two EG chain lengths. For BTrEG-2, the ϵr reaches 10, which is an unprecedented value in monoadduct fullerene derivatives. These materials open up new possibilities of studying the effect of ϵr in organic electronic devices such as organic photovoltaics, organic thermoelectrics, and organic field-effect transistors

    Conjugated Polyions Enable Organic Photovoltaics Processed from Green Solvents

    Get PDF
    This paper describes the design, synthesis, and optical and electronic properties of two conjugated polymers CPIZ-B and CPIZ-T that incorporate closed-shell cations into their conjugated backbones, balanced by anionic pendant groups. The zwitterionic nature of the polymers renders them soluble in and processable from polar, protic solvents to form semiconducting films that are not doped. These unique properties are confirmed by absorption and electron paramagnetic resonance spectroscopy. The energies of the unoccupied states respond to the tritylium moieties in the conjugated backbone, while the occupied states respond to the electron-donating ability of the uncharged, aromatic units in the backbone. Films cast from 80:20 HCOOH/H2O by volume show good electron mobilities, enabling a photovoltaic effect in proof-of-concept, bilayer solar cells

    Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined.</p> <p>Results</p> <p>To identify genes specific to the Spemann/Mangold organizer, we performed a microarray-based screen that compared wild-type and <it>Foxa2 </it>mutant embryos at late gastrulation stage (E7.5). We could detect genes that were consistently down-regulated in replicate pools of mutant embryos versus wild-type, and these included a number of known node and DE markers. We selected 314 genes without previously published data at E7.5 and screened for expression by whole mount <it>in situ </it>hybridization. We identified 10 novel expression patterns in the node and 5 in the definitive endoderm. We also found significant reduction of markers expressed in secondary tissues that require interaction with the organizer and its derivatives, such as cardiac mesoderm, vasculature, primitive streak, and anterior neuroectoderm.</p> <p>Conclusion</p> <p>The genes identified in this screen represent novel Spemann/Mangold organizer genes as well as potential Foxa2 targets. Further investigation will be needed to define these genes as novel developmental regulatory factors involved in organizer formation and function. We have placed these genes in a Foxa2-dependent genetic regulatory network and we hypothesize how Foxa2 may regulate a molecular program of Spemann/Mangold organizer development. We have also shown how early loss of the organizer and its inductive properties in an otherwise normal embryo, impacts on the molecular profile of surrounding tissues.</p

    Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts

    Get PDF
    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

    Structural and Electronic Decoupling of C_(60) from Epitaxial Graphene on SiC

    Get PDF
    We have investigated the initial stages of growth and the electronic structure of C_(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C_(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C_(60) superlattice. We measure a highest occupied molecular orbital–lowest unoccupied molecular orbital gap of ~ 3.5 eV for the C_(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C_(60) and substrate-induced screening as compared to C_(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates

    Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    Get PDF
    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens

    A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study

    Get PDF
    Abstract Genomics, transcriptomics, proteomics and fluxomics are powerful omics-technologies that play a major role in today&apos;s research. For each of these techniques good sample quality is crucial. Major factors contributing to the quality of a sample is the actual sampling procedure itself and the way the sample is stored directly after sampling. It has already been described that RNAlater can be used to store tissues and cells in a way that the RNA quality and quantity are preserved. In this paper, we demonstrate that quaternary ammonium salts (RNAlater) are also suitable to preserve and store samples from Saccharomyces cerevisiae for later use with the four major omics-technologies. Moreover, it is shown that RNAlater also preserves the cell morphology and the potential to recover growth, permitting microscopic analysis and yeast cell culturing at a later stage

    Identification of BC005512 as a DNA Damage Responsive Murine Endogenous Retrovirus of GLN Family Involved in Cell Growth Regulation

    Get PDF
    Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512), whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs), but not by non-genotoxins (NGTXs). Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV). However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions
    corecore